Low-Rank and Predictive Process Models

Abhi Datta¹, Sudipto Banerjee² and Andrew O. Finley³ July 31, 2017

¹Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.
 ²Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles.
 ³Departments of Forestry and Geography, Michigan State University, East Lansing, Michigan.

Multivariate Gaussian likelihoods for geostatistical models

- $\mathscr{L} = \{\ell_1, \ell_2, \dots, \ell_n\}$ are locations where data is observed
- $y(\ell_i)$ is outcome at the *i*-th location, $y = (y(\ell_1), y(\ell_2), \dots, y(\ell_n))^\top$
- Model: $y \sim N(X\beta, K_{\theta})$
- Estimating process parameters from the likelihood: $-\frac{1}{2}\log \det(K_{\theta}) - \frac{1}{2}(y - X\beta)^{\top}K_{\theta}^{-1}(y - X\beta)$
- K_{θ} is usually dense with no exploitable structure
- Bayesian inference: Priors on $\{\beta, \theta\}$
- Challenges: Storage and $chol(K_{\theta}) = LDL^{\top}$.

Prediction and interpolation

• Conditional predictive density

$$p(y(\ell_0) | y, \theta, \beta) = N\left(y(\ell_0) | \mu(\ell_0), \sigma^2(\ell_0)\right)$$

• "Kriging" (spatial prediction/interpolation)

$$\mu(\ell_0) = \mathsf{E}[y(\ell_0) | y, \theta] = x^\top(\ell_0)\beta + k_\theta^\top(\ell_0)K_\theta^{-1}(y - X\beta) ,$$

$$\sigma^2(\ell_0) = \mathsf{var}[y(\ell_0) | y, \theta] = K_\theta(\ell_0, \ell_0) - k_\theta^\top(\ell_0)K_\theta^{-1}k_\theta(\ell_0) .$$

• Bayesian "kriging" computes (simulates) posterior predictive density:

$$p(y(\ell_0) | y) = \int p(y(\ell_0) | y, \theta, \beta) p(\beta, \theta | y) d\beta d\theta$$

Computational Details

• Compute the mean and variance (for any given $\{\beta, \theta\}$ and ℓ_0):

Solve for *u*: Predictive mean: Predictive variance:

- $egin{aligned} & \mathcal{K}_{ heta} u = k_{ heta}(\ell_0) \ ; \ & \mathbf{x}^{ op}(\ell_0)eta + u^{ op}(\mathbf{y} \mathbf{X}eta) \ ; \ & \mathcal{K}_{ heta}(\ell_0,\ell_0) u^{ op}k_{ heta}(\ell_0) \ . \end{aligned}$
- Compute the mean and variance (for any given {β, θ} and ℓ₀):
- Primary bottleneck is chol(·)

Burgeoning literature on spatial big data

- Low-rank models (Wahba, 1990; Higdon, 2002; Kamman & Wand, 2003; Paciorek, 2007; Rasmussen & Williams, 2006; Stein 2007, 2008; Cressie & Johannesson, 2008; Banerjee et al., 2008; 2010; Gramacy & Lee 2008; Sang et al., 2011, 2012; Lemos et al., 2011; Guhaniyogi et al., 2011, 2013; Salazar et al., 2013; Katzfuss, 2016)
- Spectral approximations and composite likelihoods: (Fuentes 2007; Paciorek, 2007; Eidsvik et al. 2016)
- Multi-resolution approaches (Nychka, 2002; Johannesson et al., 2007; Matsuo et al., 2010; Tzeng & Huang, 2015; Katzfuss, 2016)
- Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A^{-1})
 - 1. Covariance tapering (Furrer et al. 2006; Du et al. 2009; Kaufman et al., 2009; Shaby and Ruppert, 2013)
 - 2. GMRFs to GPs: INLA (Rue et al. 2009; Lindgren et al., 2011)
 - 3. LAGP (Gramacy et al. 2014; Gramacy and Apley, 2015)
 - 4. Nearest-neighbor models (Vecchia 1988; Stein et al. 2004; Stroud et al 2014; Datta et al., 2016)

Bayesian low rank models

- A *low rank* or *reduced rank* process approximates a *parent* process over a smaller set of points (*knots*).
- Start with a *parent process* $w(\ell)$ and construct $\tilde{w}(\ell)$

$$w(\ell) pprox ilde w(\ell) = \sum_{j=1}^r b_ heta(\ell,\ell_j^*) z(\ell_j^*) = b_ heta^ op(\ell) z,$$

where

- *z*(ℓ) is any well-defined process (could be same as w(ℓ));
- b_θ(ℓ, ℓ') is a family of basis functions indexed by parameters θ;
- $\{\ell_1^*, \ell_2^*, \dots, \ell_r^*\}$ are the knots;
- $b_{\theta}(\ell)$ and z are $r \times 1$ vectors with components $b_{\theta}(\ell, \ell_j^*)$ and $z(\ell_j^*)$, respectively.

Bayesian low rank models (contd.)

- $\tilde{w} = (\tilde{w}(\ell_1), \tilde{w}(\ell_2), \dots, \tilde{w}(\ell_n))^\top$ is represented as $\tilde{w} = B_\theta z$
- B_{θ} is $n \times r$ with (i, j)-th element $b_{\theta}(\ell_i, \ell_j^*)$
- Irrespective of how big n is, we now have to work with the r
 (instead of n) z(ℓ_i^{*})'s and the n × r matrix B_θ.
- Since *r* << *n*, the consequential dimension reduction is evident.
- \tilde{w} is a valid stochastic process in *r*-dimensions space with covariance:

$$\operatorname{cov}(\tilde{w}(\ell), \tilde{w}(\ell')) = b_{\theta}^{\top}(\ell) V_z b_{\theta}(\ell')$$

where V_z is the variance-covariance matrix (also depends upon parameter θ) for z.

• When n > r, the joint distribution of \tilde{w} is singular.

The Sherman-Woodbury-Morrison formulas

- Low-rank dimension reduction is similar to Bayesian linear regression
- Consider a simple hierarchical model (with $\beta = 0$):

 $N(z \mid 0, V_z) \times N(y \mid B_{\theta}z, D_{\tau})$,

where y is $n \times 1$, z is $r \times 1$, D_{τ} and V_z are positive definite matrices of sizes $n \times n$ and $r \times r$, respectively, and B_{θ} is $n \times r$.

- The low rank specification is $B_{\theta}z$ and the prior on z.
- D_{τ} (usually diagonal) has the residual variance components.
- Computing var(y) in two different ways yields

 $(D_{\tau} + B_{\theta} V_z B_{\theta}^{\top})^{-1} = D_{\tau}^{-1} - D_{\tau}^{-1} B_{\theta} (V_z^{-1} + B_{\theta}^{\top} D_{\tau}^{-1} B_{\theta})^{-1} B_{\theta}^{\top} D_{\tau}^{-1} .$

• A companion formula for the determinant: $\det(D_{\tau} + B_{\theta}V_{\tau}B_{\theta}^{\top}) = \det(V_{\tau})\det(D_{\tau})\det(V_{\tau}^{-1} + B_{\theta}^{\top}D_{\tau}^{-1}B_{\theta}).$

Practical implementation for Bayesian low rank models

• In practical implementation, better to avoid SWM formulas.

- $e_* \sim N(0, I_{n+r}).$
- $V_z^{1/2}$ and $D_\tau^{1/2}$ are matrix square roots of of V_z and D_τ , respectively.
- If D_τ is diagonal (as is common), then D_τ^{1/2} is simply the square root of the diagonal elements of D_τ.
- $V_z^{1/2} = \text{chol}(V_z)$ is the triangular (upper or lower) Cholesky factor of the $r \times r$ matrix V_z .
- Use backsolve to efficiently obtain $V_z^{-1/2}z$

Practical implementation for Bayesian low rank models (contd.)

 The marginal density of p(y_{*} | θ, τ) after integrating out z now corresponds to the normal linear model

$$y_*=B_*\hat{z}+e_*\;,$$

where \hat{z} is the ordinary least-square estimate of z.

- Use lm function to compute 2 applying the QR decomposition to B_{*}.
- Thus, we estimate the Bayesian linear model

$$p(\theta, \tau) \times N(y_* \mid B_* \hat{z}, I_{n+r})$$

- MCMC will generate posterior samples for $\{\theta, \tau\}$.
- *Recover* the posterior samples for z from those of $\{\theta, \tau\}$:

$$p(z \mid y) = \int N(z \mid \hat{z}, M) \times p(\theta, \tau \mid y) d\theta d\tau$$

where $M^{-1} = V_z^{-1} + B_{\theta}^{\top} D_{\tau}^{-1} B_{\theta}$.

Predictive process models (Banerjee et al., JRSS-B, 2008)

- A particular low-rank model emerges by taking
 - $z(\ell) = w(\ell)$
 - z = (w(ℓ₁^{*}), w(ℓ₂^{*}),..., w(ℓ_r^{*}))[⊤] as the realizations of the parent process w(ℓ) over the set of knots
 L^{*} = {ℓ₁^{*}, ℓ₂^{*},..., ℓ_r^{*}},

and then taking the conditional expectation:

$$\widetilde{w}(\ell) = \mathsf{E}[w(\ell) \mid w^*] = b_{\theta}^{\top}(\ell) z \; .$$

The basis functions are *automatically* derived from the spatial covariance structure of the parent process w(ℓ):

$$b_{\theta}^{\top}(\ell) = \mathsf{cov}\{w(\ell), w^*\}\mathsf{var}^{-1}\{w^*\} = K_{\theta}(\ell, \mathscr{L}^*)K_{\theta}^{-1}(\mathscr{L}^*, \mathscr{L}^*) \ .$$

Biases in low-rank models

• In low-rank processes, $w(\ell) = \tilde{w}(\ell) + \eta(\ell)$. What is lost in $\eta(\ell)$?

• For the predictive process,

 $var\{w(\ell)\} = var\{E[w(\ell) | w^*]\} + E\{var[w(\ell) | w^*]\}$ $\geq var\{E[w(\ell) | w^*]\}.$

Bias-adjusted or modified predictive processes

• $\eta(\ell)$ is a Gaussian process with covariance structure

$$egin{aligned} \mathsf{Cov}\{\eta(\ell),\eta(\ell')\} &= \mathsf{K}_{\eta, heta}(\ell,\ell') \ &= \mathsf{K}_{ heta}(\ell,\ell') - \mathsf{K}_{ heta}(\ell,\mathscr{L}^*)\mathsf{K}_{ heta}^{-1}(\mathscr{L}^*,\mathscr{L}^*)\mathsf{K}_{ heta}(\mathscr{L}^*,\ell') \;. \end{aligned}$$

• Remedy:

$$\widetilde{w}_{\epsilon}(\ell) = \widetilde{w}(\ell) + \widetilde{\epsilon}(\ell) \;,$$

where $\tilde{\epsilon}(\ell) \stackrel{ind}{\sim} N(0, \delta^2(\ell))$ and

 $\delta^{2}(\ell) = \operatorname{var}\{\eta(\ell)\} = K_{\theta}(\ell,\ell) - K_{\theta}(\ell,\mathscr{L}^{*})K_{\theta}^{-1}(\mathscr{L}^{*},\mathscr{L}^{*})K_{\theta}(\mathscr{L}^{*},\ell) .$

• Other improvements suggested by Sang et al. (2011, 2012) and Katzfuss (2017).

Oversmoothing in low rank models

Figure: Comparing full GP vs low-rank GP with 2500 locations. Figure (1c) exhibits oversmoothing by a low-rank process (predictive process with 64 knots)