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Multivariate Gaussian likelihoods for geostatistical models

• L = {`1, `2, . . . , `n} are locations where data is observed

• y(`i ) is outcome at the i-th location,
y = (y(`1), y(`2), . . . , y(`n))>

• Model: y ∼ N(Xβ,Kθ)

• Estimating process parameters from the likelihood:

−1
2 log det(Kθ)− 1

2(y − Xβ)>K−1
θ (y − Xβ)

• Kθ is usually dense with no exploitable structure

• Bayesian inference: Priors on {β, θ}

• Challenges: Storage and chol(Kθ) = LDL>.
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Prediction and interpolation

• Conditional predictive density

p(y(`0) | y , θ, β) = N
(
y(`0)

∣∣∣µ(`0), σ2(`0)
)
.

• “Kriging” (spatial prediction/interpolation)

µ(`0) = E[y(`0) | y , θ] = x>(`0)β + k>θ (`0)K−1
θ (y − Xβ) ,

σ2(`0) = var[y(`0) | y , θ] = Kθ(`0, `0)− k>θ (`0)K−1
θ kθ(`0) .

• Bayesian “kriging” computes (simulates) posterior predictive
density:

p(y(`0) | y) =
∫

p(y(`0) | y , θ, β)p(β, θ | y)dβdθ
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Computational Details

• Compute the mean and variance (for any given {β, θ} and `0):

Solve for u: Kθu = kθ(`0) ;
Predictive mean: x>(`0)β + u>(y − Xβ) ;
Predictive variance: Kθ(`0, `0)− u>kθ(`0) .

• Compute the mean and variance (for any given {β, θ} and `0):

Cholesky: chol(Kθ) = LDL> ;
Solve for v : v = trsolve(L, kθ(`0)) ;
Solve for u: u = trsolve(L>,D−1v) ;
Predictive mean: x>(`0)β + u>(y − Xβ) ;
Predictive variance: Kθ(`0, `0)− u>kθ(`0) .

• Primary bottleneck is chol(·)
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Burgeoning literature on spatial big data

• Low-rank models (Wahba, 1990; Higdon, 2002; Kamman & Wand,
2003; Paciorek, 2007; Rasmussen & Williams, 2006; Stein 2007,
2008; Cressie & Johannesson, 2008; Banerjee et al., 2008; 2010;
Gramacy & Lee 2008; Sang et al., 2011, 2012; Lemos et al., 2011;
Guhaniyogi et al., 2011, 2013; Salazar et al., 2013; Katzfuss, 2016)

• Spectral approximations and composite likelihoods: (Fuentes 2007;
Paciorek, 2007; Eidsvik et al. 2016)

• Multi-resolution approaches (Nychka, 2002; Johannesson et al.,
2007; Matsuo et al., 2010; Tzeng & Huang, 2015; Katzfuss, 2016)

• Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A−1)
1. Covariance tapering (Furrer et al. 2006; Du et al. 2009;

Kaufman et al., 2009; Shaby and Ruppert, 2013)
2. GMRFs to GPs: INLA (Rue et al. 2009; Lindgren et al., 2011)
3. LAGP (Gramacy et al. 2014; Gramacy and Apley, 2015)
4. Nearest-neighbor models (Vecchia 1988; Stein et al. 2004;

Stroud et al 2014; Datta et al., 2016) 4



Bayesian low rank models

• A low rank or reduced rank process approximates a parent
process over a smaller set of points (knots).

• Start with a parent process w(`) and construct w̃(`)

w(`) ≈ w̃(`) =
r∑

j=1
bθ(`, `∗j )z(`∗j ) = b>θ (`)z ,

where
• z(`) is any well-defined process (could be same as w(`));

• bθ(`, `′) is a family of basis functions indexed by parameters θ;

• {`∗1 , `∗2 , . . . , `∗r } are the knots;

• bθ(`) and z are r × 1 vectors with components bθ(`, `∗j ) and
z(`∗j ), respectively.
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Bayesian low rank models (contd.)

• w̃ = (w̃(`1), w̃(`2), . . . , w̃(`n))> is represented as w̃ = Bθz
• Bθ is n × r with (i , j)-th element bθ(`i , `∗j )
• Irrespective of how big n is, we now have to work with the r

(instead of n) z(`∗j )’s and the n × r matrix Bθ.
• Since r << n, the consequential dimension reduction is

evident.
• w̃ is a valid stochastic process in r -dimensions space with

covariance:

cov(w̃(`), w̃(`′)) = b>θ (`)Vzbθ(`′) ,

where Vz is the variance-covariance matrix (also depends
upon parameter θ) for z .

• When n > r , the joint distribution of w̃ is singular.
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The Sherman-Woodbury-Morrison formulas

• Low-rank dimension reduction is similar to Bayesian linear
regression

• Consider a simple hierarchical model (with β = 0):

N(z | 0,Vz)× N(y |Bθz ,Dτ ) ,

where y is n × 1, z is r × 1, Dτ and Vz are positive definite
matrices of sizes n× n and r × r , respectively, and Bθ is n× r .

• The low rank specification is Bθz and the prior on z .
• Dτ (usually diagonal) has the residual variance components.
• Computing var(y) in two different ways yields

(Dτ+BθVzB>θ )−1 = D−1
τ −D−1

τ Bθ(V−1
z +B>θ D−1

τ Bθ)−1B>θ D−1
τ .

• A companion formula for the determinant:

det(Dτ + BθVzB>θ ) = det(Vz) det(Dτ ) det(V−1
z + B>θ D−1

τ Bθ) .
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Practical implementation for Bayesian low rank models

• In practical implementation, better to avoid SWM formulas.[
D−1/2
τ y

0

]
︸ ︷︷ ︸ =

[
D−1/2
τ Bθ
V−1/2

z

]
︸ ︷︷ ︸ z +

[
e1

e2

]
︸ ︷︷ ︸

y∗ B∗ e∗

.

• e∗ ∼ N(0, In+r ).
• V 1/2

z and D1/2
τ are matrix square roots of of Vz and Dτ ,

respectively.
• If Dτ is diagonal (as is common), then D1/2

τ is simply the
square root of the diagonal elements of Dτ .

• V 1/2
z = chol(Vz) is the triangular (upper or lower) Cholesky

factor of the r × r matrix Vz .
• Use backsolve to efficiently obtain V−1/2

z z
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Practical implementation for Bayesian low rank models (contd.)

• The marginal density of p(y∗ | θ, τ) after integrating out z
now corresponds to the normal linear model

y∗ = B∗ẑ + e∗ ,

where ẑ is the ordinary least-square estimate of z .
• Use lm function to compute ẑ applying the QR decomposition

to B∗.
• Thus, we estimate the Bayesian linear model

p(θ, τ)× N(y∗ |B∗ẑ , In+r )

• MCMC will generate posterior samples for {θ, τ}.
• Recover the posterior samples for z from those of {θ, τ}:

p(z | y) =
∫

N(z | ẑ ,M)× p(θ, τ | y)dθdτ

where M−1 = V−1
z + B>θ D−1

τ Bθ. 9



Predictive process models (Banerjee et al., JRSS-B, 2008)

• A particular low-rank model emerges by taking
• z(`) = w(`)

• z = (w(`∗1),w(`∗2), . . . ,w(`∗r ))> as the realizations of the
parent process w(`) over the set of knots
L ∗ = {`∗1 , `∗2 , . . . , `∗r },

and then taking the conditional expectation:

w̃(`) = E[w(`) |w∗] = b>θ (`)z .

• The basis functions are automatically derived from the spatial
covariance structure of the parent process w(`):

b>θ (`) = cov{w(`),w∗}var−1{w∗} = Kθ(`,L ∗)K−1
θ (L ∗,L ∗) .
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Biases in low-rank models

• In low-rank processes, w(`) = w̃(`) + η(`). What is lost in
η(`)?
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• For the predictive process,

var{w(`)} = var{E[w(`) |w∗]}+ E{var[w(`) |w∗]}
≥ var{E[w(`) |w∗]} .
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Bias-adjusted or modified predictive processes

• η(`) is a Gaussian process with covariance structure

Cov{η(`), η(`′)} = Kη,θ(`, `′)
= Kθ(`, `′)− Kθ(`,L ∗)K−1

θ (L ∗,L ∗)Kθ(L ∗, `′) .

• Remedy:
w̃ε(`) = w̃(`) + ε̃(`) ,

where ε̃(`) ind∼ N(0, δ2(`)) and

δ2(`) = var{η(`)} = Kθ(`, `)−Kθ(`,L ∗)K−1
θ (L ∗,L ∗)Kθ(L ∗, `) .

• Other improvements suggested by Sang et al. (2011, 2012)
and Katzfuss (2017).
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Oversmoothing in low rank models

True w Full GP PPGP 64 knots
Figure: Comparing full GP vs low-rank GP with 2500 locations. Figure
(1c) exhibits oversmoothing by a low-rank process (predictive process
with 64 knots)
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