Some notes on efficient computing and high
performance computing environments

Abhi Datta!, Sudipto Banerjee? and Andrew O. Finley3
July 31, 2017

1Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.
2Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles.

3Departments of Forestry and Geography, Michigan State University, East Lansing, Michigan.

Code implementation

Very useful libraries for efficient matrix computation:

1. Fortran BLAS (Basic Linear Algebra Subprograms, see
Blackford et al. 2001). Started in late 70s at NASA JPL by
Charles L. Lawson.

2. Fortran LAPACK (Linear Algebra Package, see Anderson et
al. 1999). Started in mid 80s at Argonne and Oak Ridge
National Laboratories.

Modern math software has a heavy reliance on these libraries, e.g.,
Matlab and R. Routines are also accessible via C, C++, Python,
etc.

Many improvements on the standard BLAS and LAPACK
functions, see, e.g.,

e Intel Math Kernel Library (MKL)

e AMD Core Math Library (ACML)

Automatically Tuned Linear Algebra Software (ATLAS)

Matrix Algebra on GPU and Multicore Architecture (MAGMA)

OpenBLAS http://www.openblas.net

vecLib (for Mac users only)

http://www.openblas.net

Key BLAS and LAPACK functions used in our setting.

Function Description

dpotrf LAPACK routine to compute the Cholesky factoriza-
tion of a real symmetric positive definite matrix.

dtrsv Level 2 BLAS routine to solve the systems of equa-
tions Ax = b, where x and b are vectors and A is a
triangular matrix.

dtrsm Level 3 BLAS routine to solve the matrix equations
AX = B, where X and B are matrices and A is a
triangular matrix.

dgemv Level 2 BLAS matrix-vector multiplication.

dgemm Level 3 BLAS matrix-matrix multiplication.

Computing environments

Consider different environments:

1. A distributed system consists of multiple autonomous
computers (nodes) that communicate through a network. A
computer program that runs in a distributed system is called a
distributed program. Message Passing Interface (MPI) is a
specification for an Application Programming Interface (API)

that allows many computers to communicate.

Consider different environments:

1. A distributed system consists of multiple autonomous
computers (nodes) that communicate through a network. A
computer program that runs in a distributed system is called a
distributed program. Message Passing Interface (MPI) is a
specification for an Application Programming Interface (API)
that allows many computers to communicate.

2. A shared memory multiprocessing system consists of a single
computer with memory that may be simultaneously accessed
by one or more programs running on multiple Central
Processing Units (CPUs). OpenMP (Open Multi-Processing)
is an API that supports shared memory multiprocessing
programming.

3. A heterogeneous system uses more than one kind of processor,
e.g., CPU & (Graphics Processing Unit) GPU or CPU &
Intel’s Xeon Phi Many Integrated Core (MIC).

Which environments are right for large n settings?

e MCMC necessitates iterative evaluation of the likelihood

which requires operations on large matrices.

e A specific hurdle is factorization to computing determinant
and inverse of large dense covariance matrices.

e We try to model our way out and use computing tools to
overcome the complexity (e.g., covariance tapering, Kaufman
et al. 2008; low-rank methods, Cressie and Johannesson 2008;
Banerjee et al. 2008, etc.).

e Due to slow network communication and transport of
submatrices among nodes distributed systems are not ideal for
these types of iterative large matrix operations.

e My lab currently favors shared memory multiprocessing and
heterogeneous systems.

e Newest unit is a Dell Poweredge with 384 GB of RAM, 2
threaded 10-core Xeon CPUs, and 2 Intel Xeon Phi
Coprocessor with 61-cores (244 threads) running a Linux

operating systems.

e Software includes OpenMP coupled with Intel MKL. MKL is a
library of highly optimized, extensively threaded math routines
designed for Xeon CPUs and Phi coprocessors (e.g., BLAS,
LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier

Transforms, and vector RNGs).

So what kind of speed up to expect from threaded BLAS and
LAPACK libraries.

Cholesky factorization (dpotrf), n=20000 Cholesky factorization (dpotrf), n=40000
<
=
8
<3 S -
ﬁ 1 —
2 o T o
- 8 | T 8 |
5= £8
o o
g . g
38 s8]
£ ES
c 9o c
&g @ S
g 3§
2 o | 3
w ¥ [n}
o
8
o N
34
T T T T T T T T
5 10 15 20 5 10 15 20

Number of Xeon cores Number of Xeon cores

R and threaded BLAS and LAPACK

e Many core and contributed packages (including spBayes) call
BLAS)and LAPACK Fortran libraries.

e Compile R against threaded BLAS and LAPACK provides
substantial computing gains:
e processor specific threaded BLAS/LAPACK implementation
(e.g., MKL or ACML)

e processor specific compilers (e.g., Intel’s icc/ifort)

For Linux/Unix: compiling R to call MKL's BLAS and LAPACK
libraries (rather than stock serial versions). Change your
config.site file and configure call in the R source code

directory.
My config.site file

CC=icc

CFLAGS="-g -03 -wd188 -ip -mp"

F77=ifort

FLAGS="-g -03 -mp -openmp"

CXX=icpc

CXXFLAGS="-g -03 -mp -openmp"

FC=ifort

FCFLAGS="-g -03 -mp —openmp"
ICC_LIBS=/opt/intel/composerxe/lib/intel64
IFC_LIBS=/opt/intel/composerxe/lib/intel64
LDFLAGS="-L$ICC_LIBS -L$IFC_LIBS -L/usr/local/lib"
SHLIB_CXXLD=icpc

SHLIB_CXXLDFLAGS=-shared

Compiling R to call MKL's BLAS and LAPACK libraries (rather
than stock serial versions). Change your config.site file and
configure call in the R source code directory.

My configure script
MKL_LIB_PATH="/opt/intel/composerxe/mkl/1ib/intel64"
export LD_LIBRARY PATH=$MKL_LIB_PATH
MKL="-L${MKL_LIB_PATH} -1mkl_intel_ lp64
—-1lmkl intel thread
-1mkl_core -liompb

-lpthread -1m"

./configure --with-blas="$MKL" --with-lapack
—--prefix=/usr/local/R-mkl

10

For many BLAS and LAPACK functions calls from R, expect near

linear speed up ...

& Terminal - andy@quercus:~/mic samples/mki

file Edit View Terminal Tabs kelp

52, 36
o4

16 4.
8 days, 23:13:24

11

Mac users, see some vecLib linking hints at
http://blue.for.msu.edu/GWEDA17/BLASHints.txt

Linux/Unix users, compile R with MKL as described above, or
compile OpenBLAS and just redirect R's default libRblas.so to

libopenblas.so, e.g.,

/usr/local/lib/R/1lib/1libRblas.so ->
/opt/OpenBLAS/1lib/libopenblas.so

See http://blue.for.msu.edu/comp-notes for some simple
examples of C++ with MKL and Rmath libraries along with

associated Makefile files.

12

http://blue.for.msu.edu/GWEDA17/BLASHints.txt
http://blue.for.msu.edu/comp-notes

	Code implementation
	Computing environments

