Wentao Zhan Johns Hopkins University Department of Biostatistics

STATISTICAL AND MACHINE LEARNING FOR BIG GEOSPATIAL DATA: Part IV b

Overview of Part IV b

Introduction to geospaNN

Basic features of geospaNN

Simulation examples of geospaNN General Architecture design NNGLS handles complex interaction NNGLS vs added-spatial-features approaches

Real data application of geospaNN

Short course on geospatial machine learning

GeospaNN

Stands for: Geospatial Neural Networks.

📩 GeospaNN			
GeospaNN	GeospaNN		
Home	ocospanni		
Overview			
How to start	Authors: Wentao Zhan		
Examples	A paakaga bacad on ti		
Documentation	A package based on t		
	CoconoNIN is a formal		

Pypi: https://pypi.org/project/geospaNN/

Wentao Zhan

suggestions and comments.

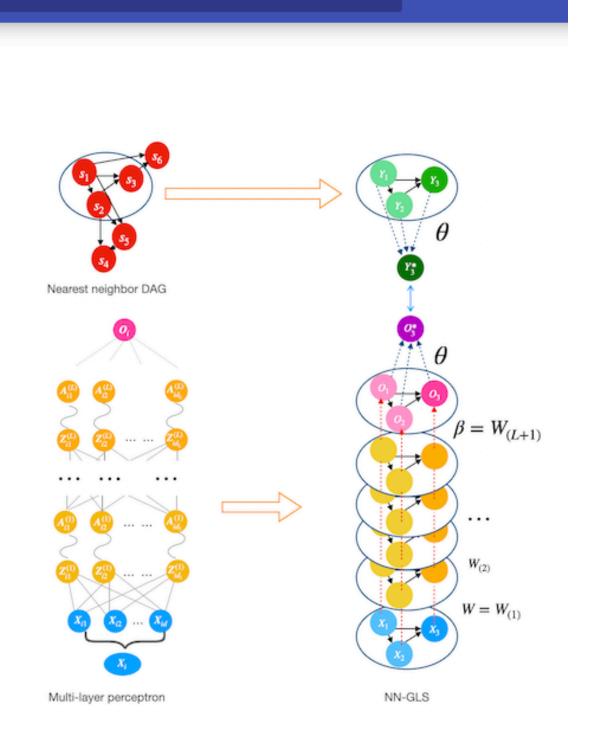
Q Search

- Neural networks for geospatial data

n (wzhan3@jhu.edu), Abhirup Datta (abhidatta@jhu.edu)

the paper: Neural networks for geospatial data

GeospaNN is a formal implementation of NN-GLS, the Neural Networks for geospatial data proposed in Zhan et.al (2023), that explicitly accounts for spatial correlation in the data. The package is developed using PyTorch and under the framework of PyG library. NN-GLS is a geographically-informed Graph Neural Network (GNN) for analyzing large and irregular geospatial data, that combines multi-layer perceptrons, Gaussian processes, and generalized least squares (GLS) loss. NN-GLS offers both regression function estimation and spatial prediction, and can scale up to sample sizes of hundreds of thousands. Users are welcome to provide any helpful



Short course on geospatial machine learning

Outline

1. Basic features

- 2. Simulation
- 3. Real data example

Wentao Zhan

Short course on geospatial machine learning

Start point: what we have? **Point process:**

- Data: (Y_i, X_i, s_i) : i = 1, ..., n
 - Y_i : scalar response
 - X_i : *d*-dimensional covariate

-
$$s_i$$
 : location

air pressure	relative humidity	U-wind	V-wind	PM 2.5	longitude	latitude
0.887664	0.774197	0.868530	0.781498	5.020834	0.980311	0.906268
0.882153	0.751742	0.864206	0.770715	3.837500	0.983093	0.889762
0.928359	0.714189	0.697080	0.813224	2.041666	0.974238	0.814722
0.954218	0.690767	0.625266	0.868161	3.669444	0.976951	0.798275
0.893599	0.685830	0.688808	0.842395	1.020833	0.945193	0.800337
•••	•••	•••	•••	•••	•••	•••

Short course on geospatial machine learning

Simulate data: input

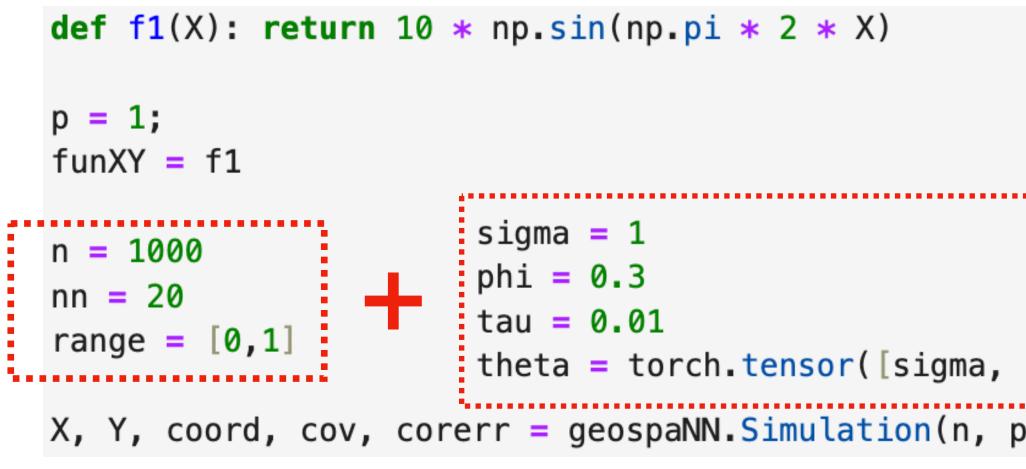
def f1(X): return 10 * np.sin(np.pi * 2 * X) p = 1; funXY = f1n = 1000nn = 20range = [0,1]X, Y, coord, cov, corerr = geospaNN.Simulation(n, p, nn, funXY, theta, range=range)

$$Y_i(s) = m(X_i(s)) + w(s) + \epsilon(s)$$

- "p": Dimension of the input.
- "funXY": 1-D function $m: X \in \mathbb{R}^p \to Y \in \mathbb{R}$
 - $Y = m(X) = 10 \sin(2\pi X), X \in R$

•
$$Y = m(X) = \frac{1}{6} \left(10 \sin(\pi X_1 X_2) + 2 \right)$$

$20(X_3 - 0.5)^2 + 20X_4 + 5X_5)$, $X \in [0,1]^5$



$$Y_i(s) = m(X_i(s)) + w(s) + \epsilon(s)$$

- "n": Number of spatial locations.
- "theta": Spatial parameters in $Cov(s, t) = \sigma^2(\exp(-\phi | s t |) + \tau^2 I(s = t))$
- "range": Spatial coordinates are sampled randomly from $[0,1]^2$.

"nn": Number of nearest neighbors used for NNGP approximation. 20 recommended.

def f1(X): return 10 * np.sin(np.pi * 2 * X) p = 1; funXY = f1sigma = 1n = 1000phi = 0.3 nn = 20tau = 0.01 range = [0,1] theta = torch.tensor([sigma, X, Y, coord, cov, corerr = geospaNN.Simulation(n,

$$Y_i(s) = m(X_i(s)) + w(s) + \epsilon(s)$$

"X": X(s), non-spatial covariates sampled from [0,1] "Y": Y(s), response "coord": *s*, spatial coordinates "cov": covariance matrix

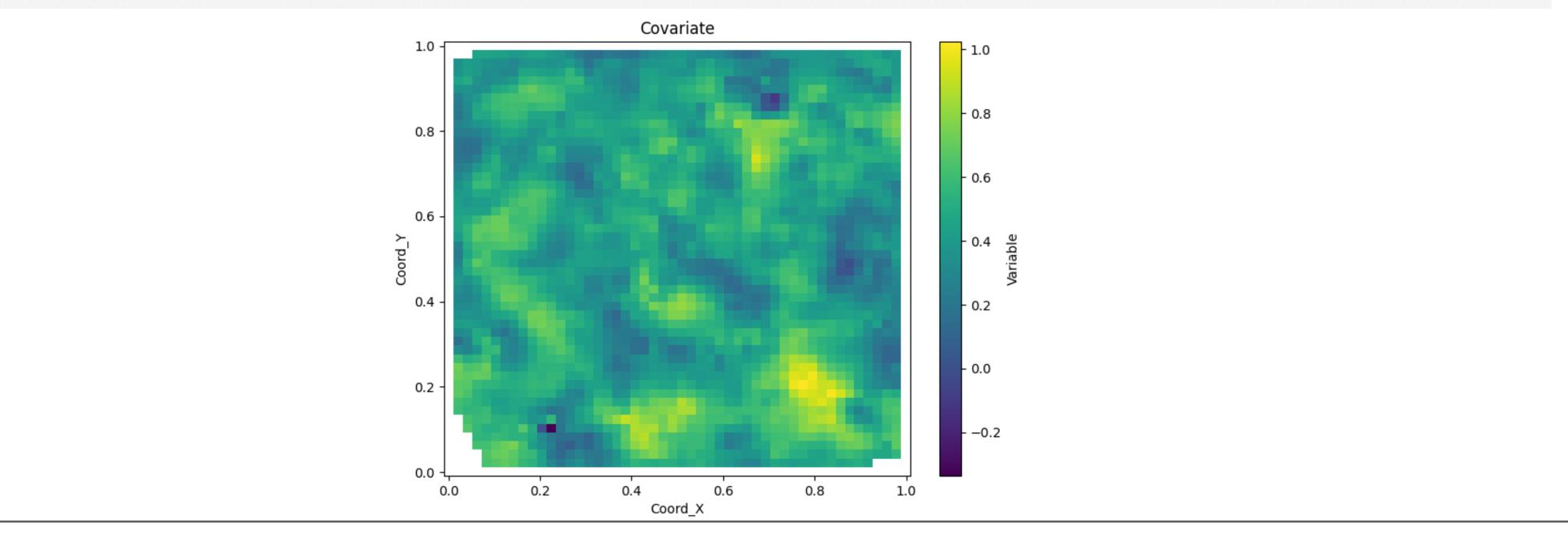
"corerr": $w(s) + \epsilon(s)$, correlated effect (error) term

Short course on geospatial machine learning

What if we want X(s) to also have spatial distribution?

1: Simulate X(s) as a spatial term.

torch.manual_seed(2025) _, _, _, _, X = geospaNN.Simulation(n, p, nn, funXY, torch.tensor([1, 5, 0.01]), range=[0, 1]) X = X.reshape(-1,p)X = (X - X.min())/(X.max() - X.min())



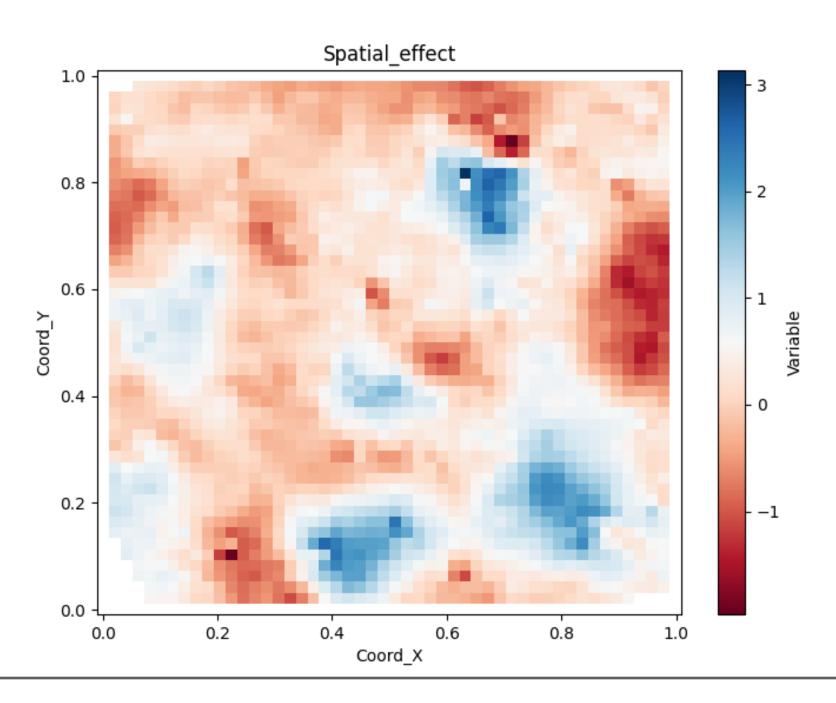
Wentao Zhan

Short course on geospatial machine learning

What if we want X(s) to also have spatial distribution? 2: Simulate spatial coordinates and true spatial effect.

torch.manual_seed(2025)

_, _, coord, cov, corerr = geospaNN.Simulation(n, p, nn, funXY, theta, range=[0, 1])

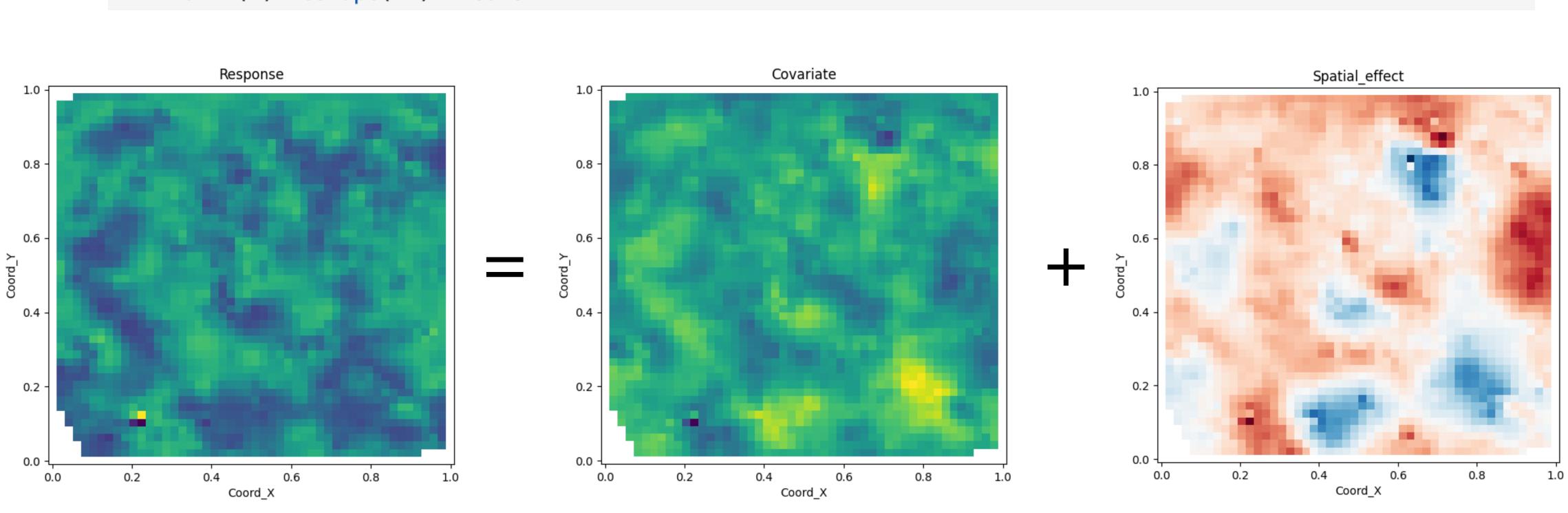


Wentao Zhan

Short course on geospatial machine learning

What if we want X(s) to also have spatial distribution? 3: Compose the response.

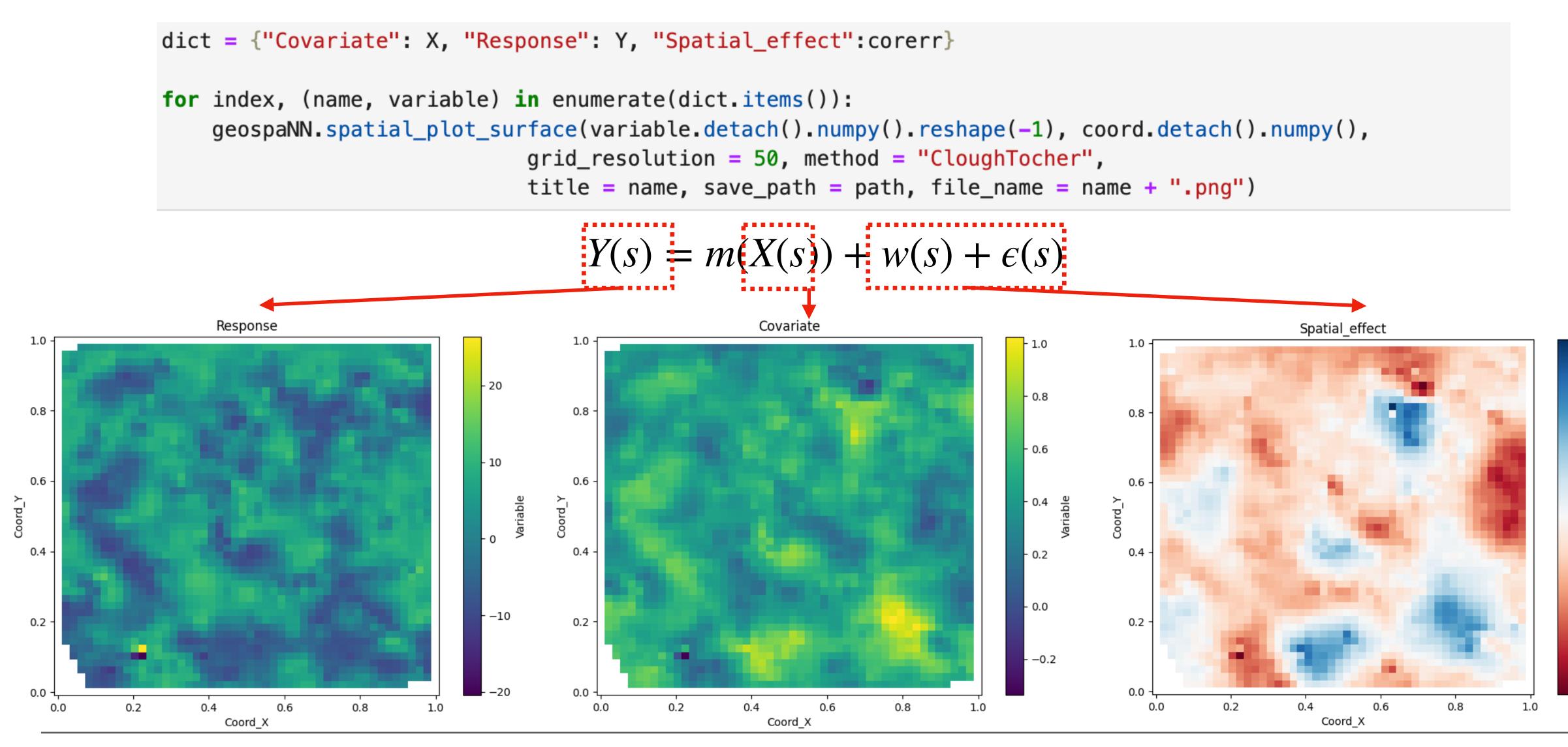
Y = funXY(X).reshape(-1) + corerr



Wentao Zhan Sho

Short course on geospatial machine learning

Visualize data: geospaNN.spatial_plot_surface

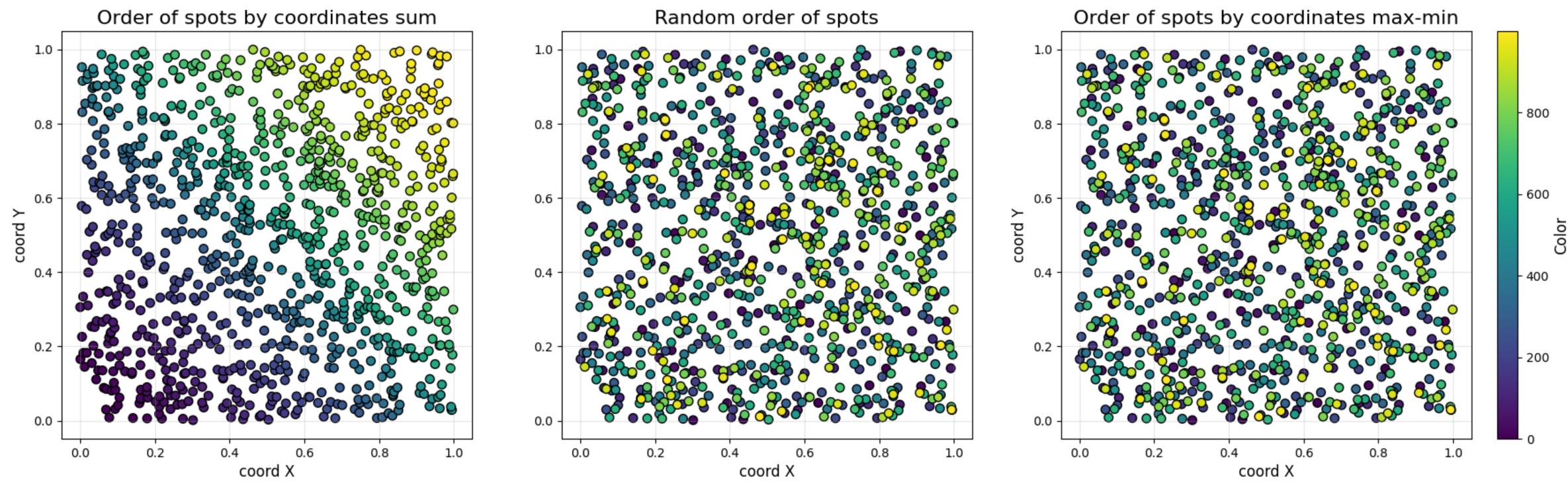


Short course on geospatial machine learning

Wentao Zhan

Spatial ordering

X, Y, coord, _ = geospaNN.spatial_order(X, Y, coord, method='max-min')



Wentao Zhan

Short course on geospatial machine learning

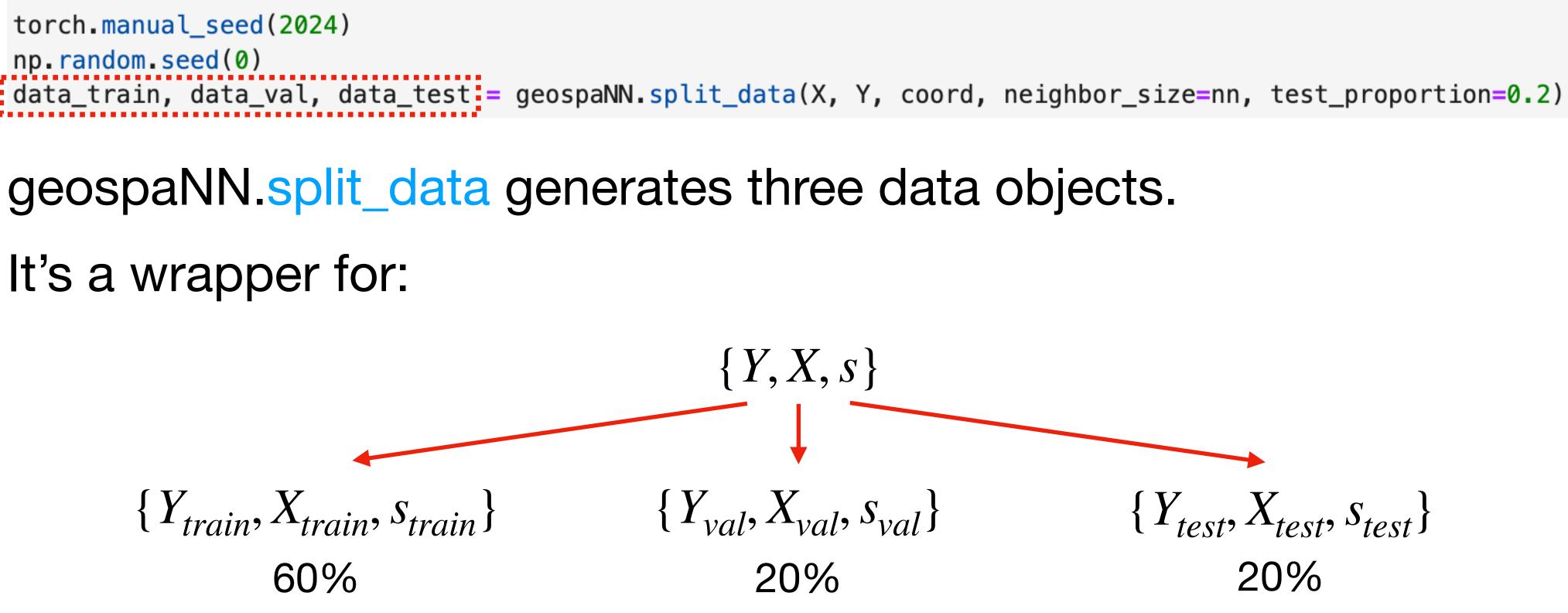
Spatial data loader: geospaNN.make_graph

data = geospaNN.make_graph(X, Y, coord, nn, Ind_list = None)

Data loader provides an efficient way to iterate over a dataset. geospaNN.make_graph generates data loader object including:

- X, Y, s in spatial modeling.
- Edge index and attributions connecting nearest neighbors.
- Allow users to pass predefined $n \times k$, k neighbor index matrix.
- Objects can be called by data.x, data.y, data.pos,
- Key function.

Training-testing split: geospaNN.split_data

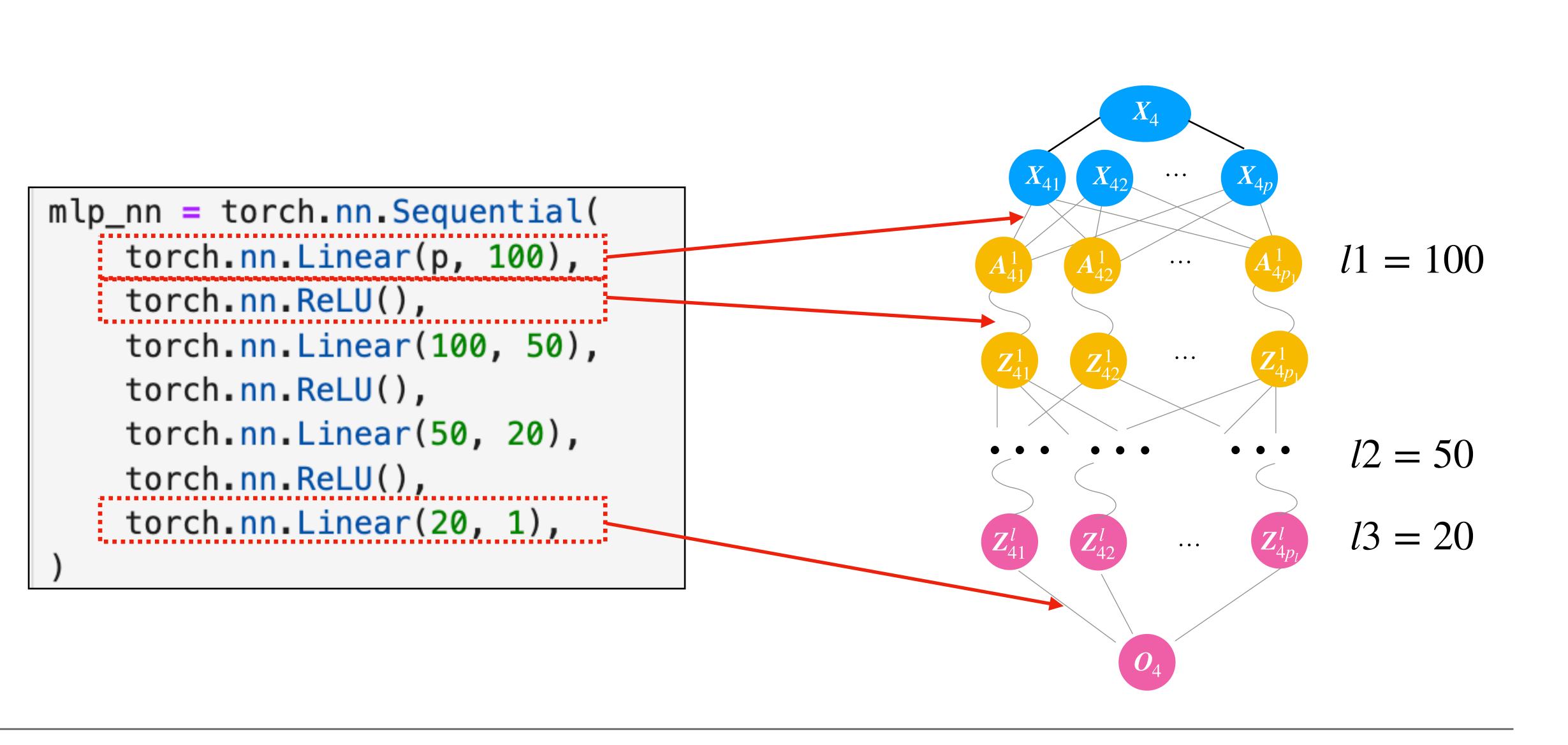


data_train = make_graph(X_train, Y_train, coord_train, neighbor_size) data_val = make_graph(X_val, Y_val, coord_val, neighbor_size) data_test = make_graph(X_test, Y_test, coord_test, neighbor_size)

Wentao Zhan

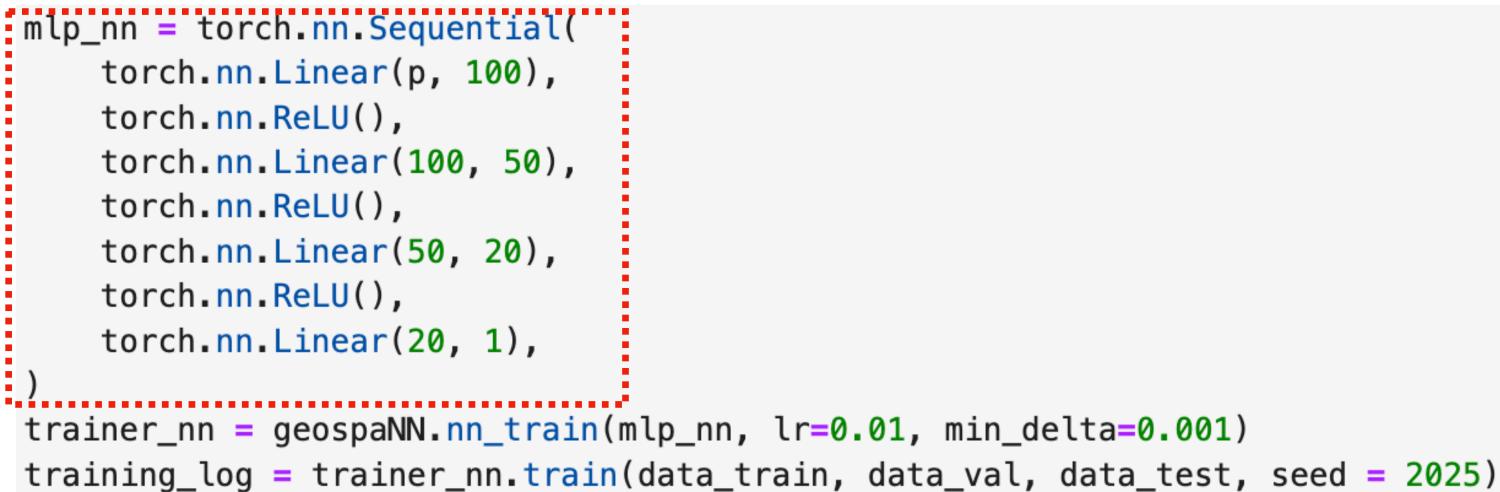
Short course on geospatial machine learning

Model training: ordinary neural networks



Short course on geospatial machine learning

Model training: ordinary neural networks



- "mlp_nn": multi-layer perceptron (mlp) architecture
- "nn_model": object for training process and hyper parameters.
 - "Ir": learning rate.
 - "min_delta": cutoff for "significant update".
- "nn_model.train": A wrapper for the common training loop.

Short course on geospatial machine learning

Model training: NN-GLS

```
mlp_nngls = torch.nn.Sequential(
    torch.nn.Linear(p, 100),
    torch.nn.ReLU(),
    torch.nn.Linear(100, 50),
    torch.nn.ReLU(),
    torch.nn.Linear(50, 20),
    torch.nn.ReLU(),
    torch.nn.Linear(20, 1),
model = geospaNN.nngls(p=p, neighbor_size=nn, coord_dimensions=2, mlp=mlp_nngls,
                      theta=torch.tensor(theta0))
trainer_nngls = geospaNN.nngls_train(model, lr=0.1, min_delta=0.001)
training_log = trainer_nngls.train(data_train, data_val, data_test, epoch_num= 200,
                                  Update_init=10, Update_step=2, seed = 2025)
                                                  = \sigma
```

$$Cov(w(s_1), w(s_2)) = C(s_1, s_2 | \theta) =$$

- Spatial parameters are initialized and updated in training.
 - "Update_init" is the initial epoch starting updating.
 - "Update_step" is the gap of epochs between updates.
- Everything else than θ are the same to NN.

$$\tau^{2}(\exp(-\phi | s_{1} - s_{2}|) + \tau^{2}I(s_{1} = s_{2}))$$

How θ get updated?

torch.manual_seed(2025)

_, _, coord_simp, _, corerr_simp = geospaNN.Simulation(n, p, nn, funXY,

theta_hat = geospaNN.theta_update(corerr_simp, coord_simp, neighbor_size=20)

Theta estimated as [0.88942914 1.74742522 0.01030131]

geospaNN.theta_update currently call the BRISC R-package (Saha, & Datta, 2018) for likelihood-based parameter estimation.

```
torch.tensor([1,1.5,0.01]), range=[0, 10])
```

Short course on geospatial machine learning

How θ get updated?

theta_hat = geospaNN.theta_update(corerr_simp, coord_simp, neighbor_size=20)

Theta estimated as [0.88942914 1.74742522 0.01030131]

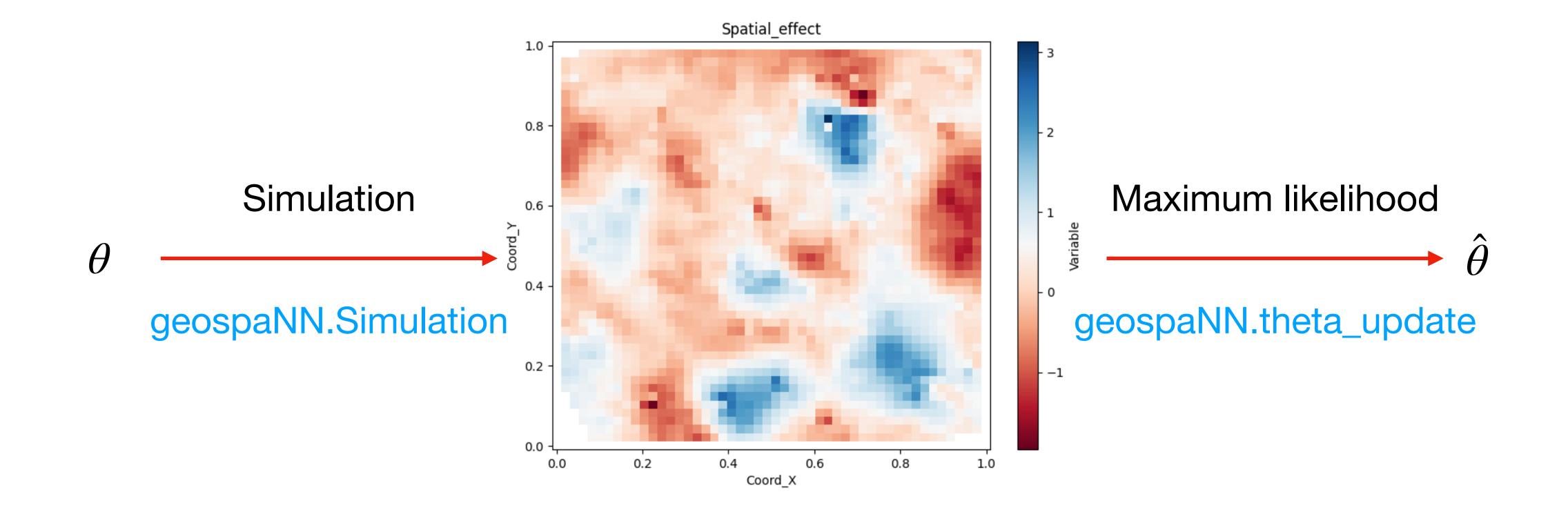
• geospaNN.linear_GLS, as wrapper of BRISC_estimation() in R, can be called to solve β and θ in SPLMM:

$$Y_i(s) = X_i(s)\beta + w(s) + \epsilon(s), w(s) \sim C(\cdot, \cdot | \theta)$$
$$Y_i(s) = m(X_i(s)) + w(s) + \epsilon(s)$$

Wentao Zhan

Short course on geospatial machine learning

How θ get updated?

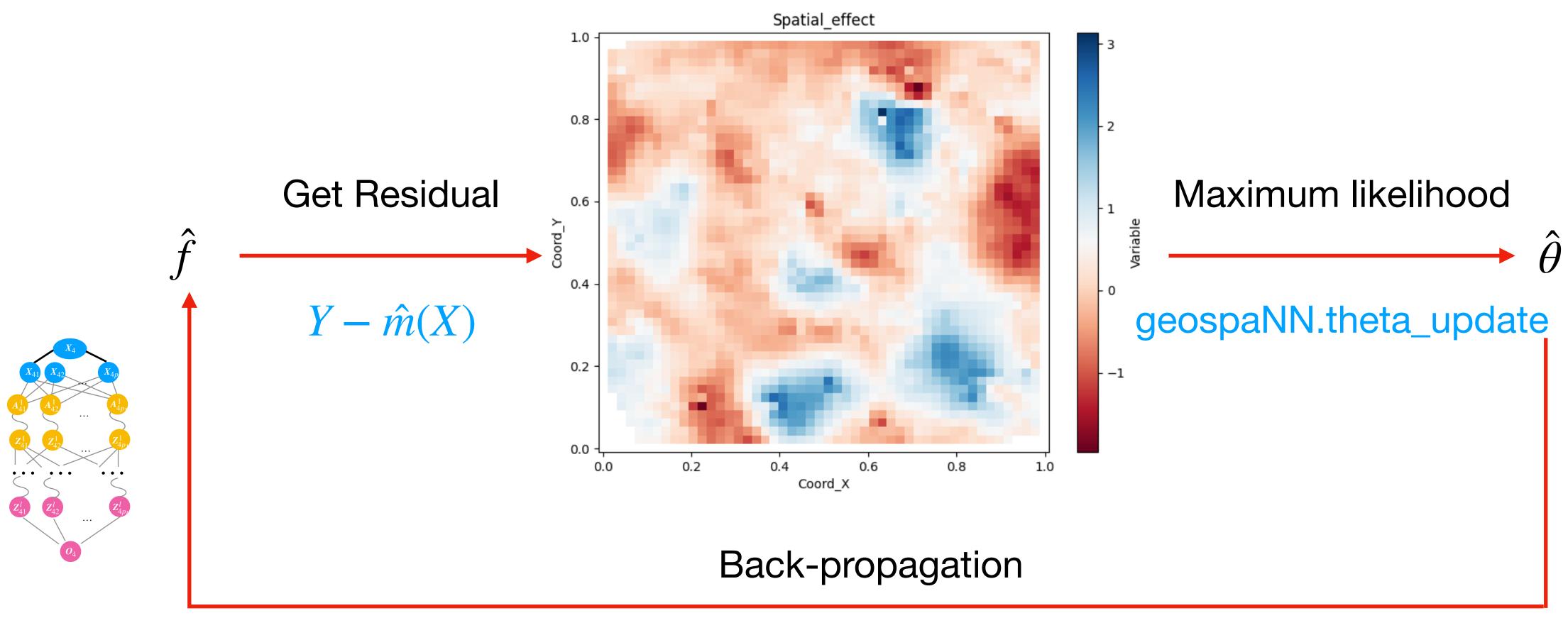


Wentao Zhan

Short course on geospatial machine learning

How θ get updated in NN-GLS?

theta0 = geospaNN.theta_update(mlp_nn(data_train.x).squeeze() - data_train.y, data_train.pos, neighbor_size=20)



Wentao Zhan

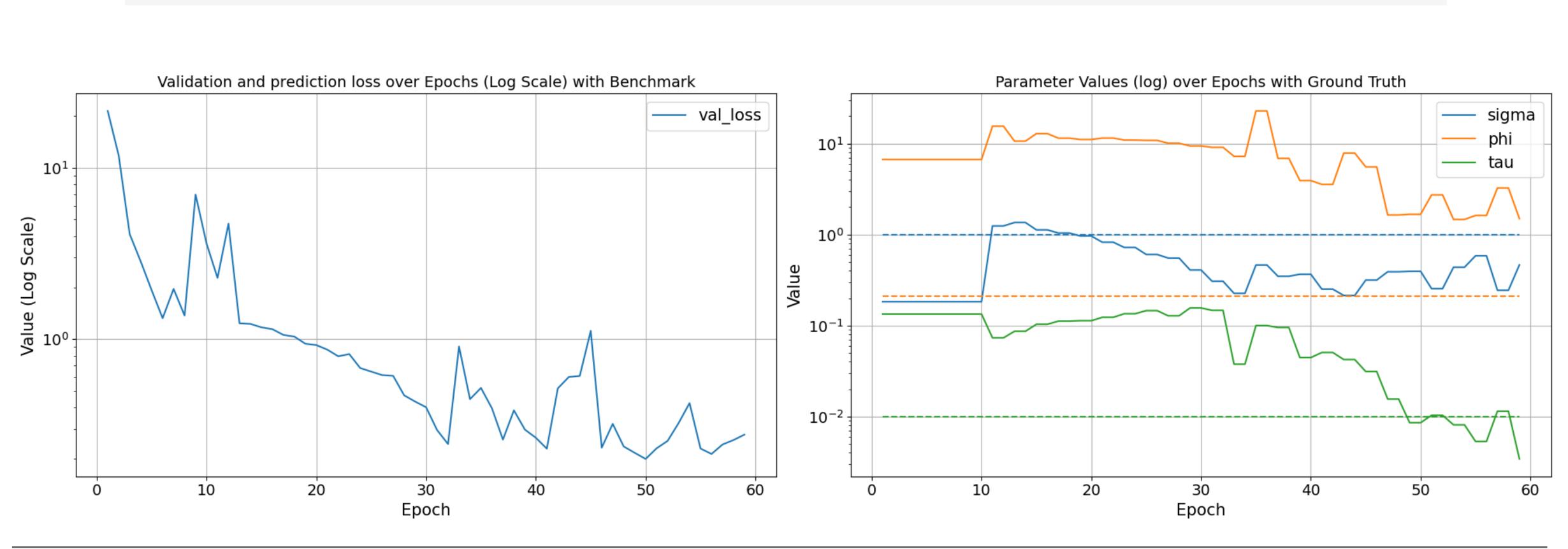
Short course on geospatial machine learning

geospaNN.nngls_train.train

Training output

Training curves of validation loss and spatial parameters.

geospaNN.plot_log(training_log, theta, path)



Wentao Zhan

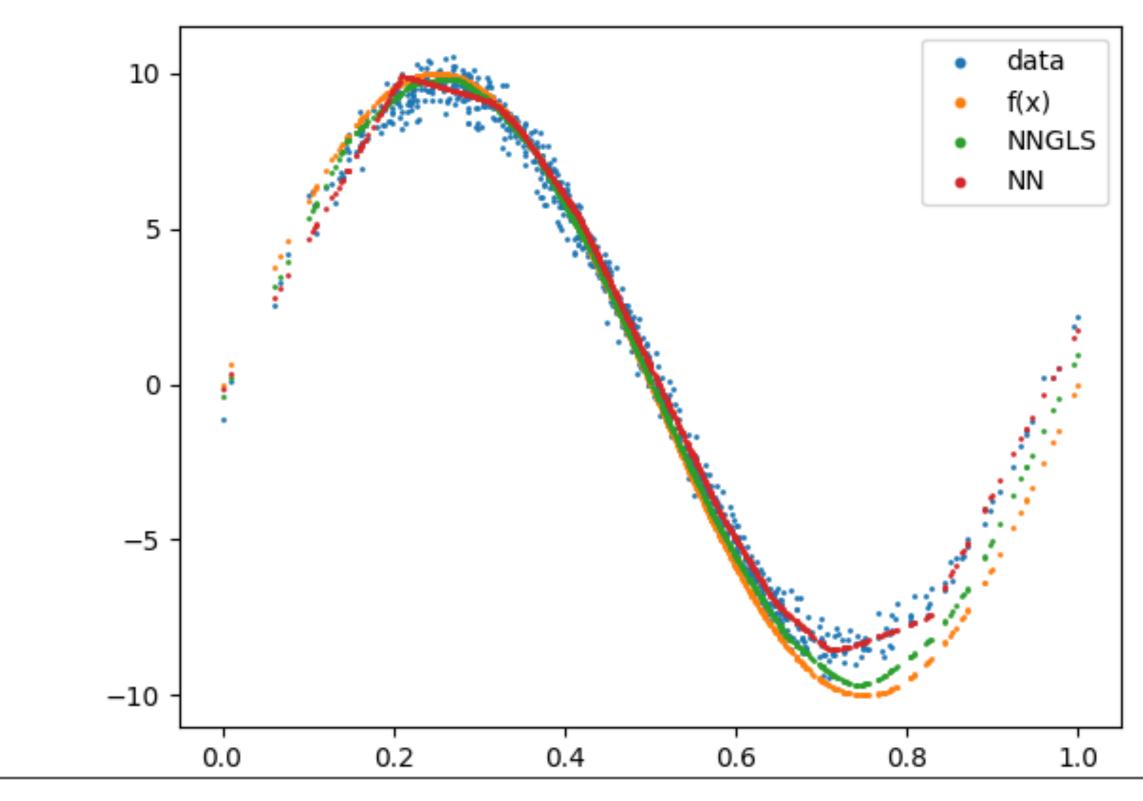
Short course on geospatial machine learning

Estimation: geospaNN.nngls.estimate

model = geospaNN.nngls(p=p, neighbor_size=nn, coord_dimensions=2, mlp=mlp_nngls, theta=torch.tensor(theta0))

Equivalent to "model.mlp(X)".

estimate = model.estimate(X)



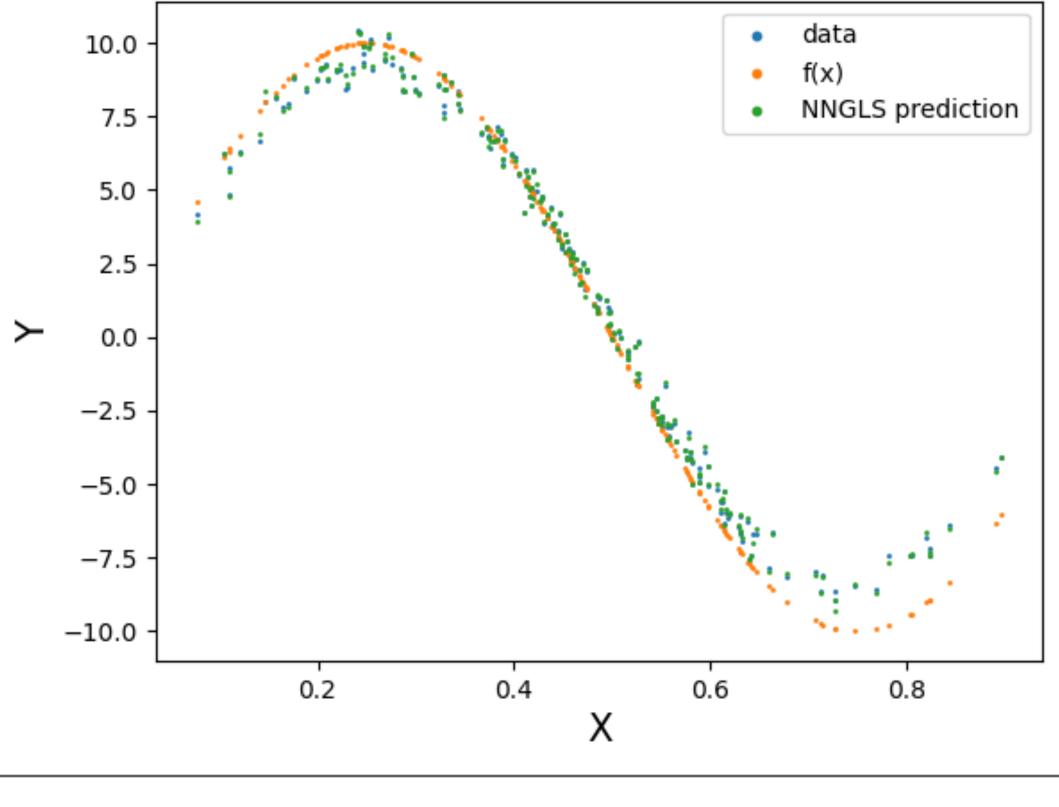
Wentao Zhan

Short course on geospatial machine learning

Prediction: geospaNN.nngls.predict

Efficient prediction through nearest neighbor kriging:

test_predict = model.predict(data_train, data_test)



Wentao Zhan

Short course on geospatial machine learning

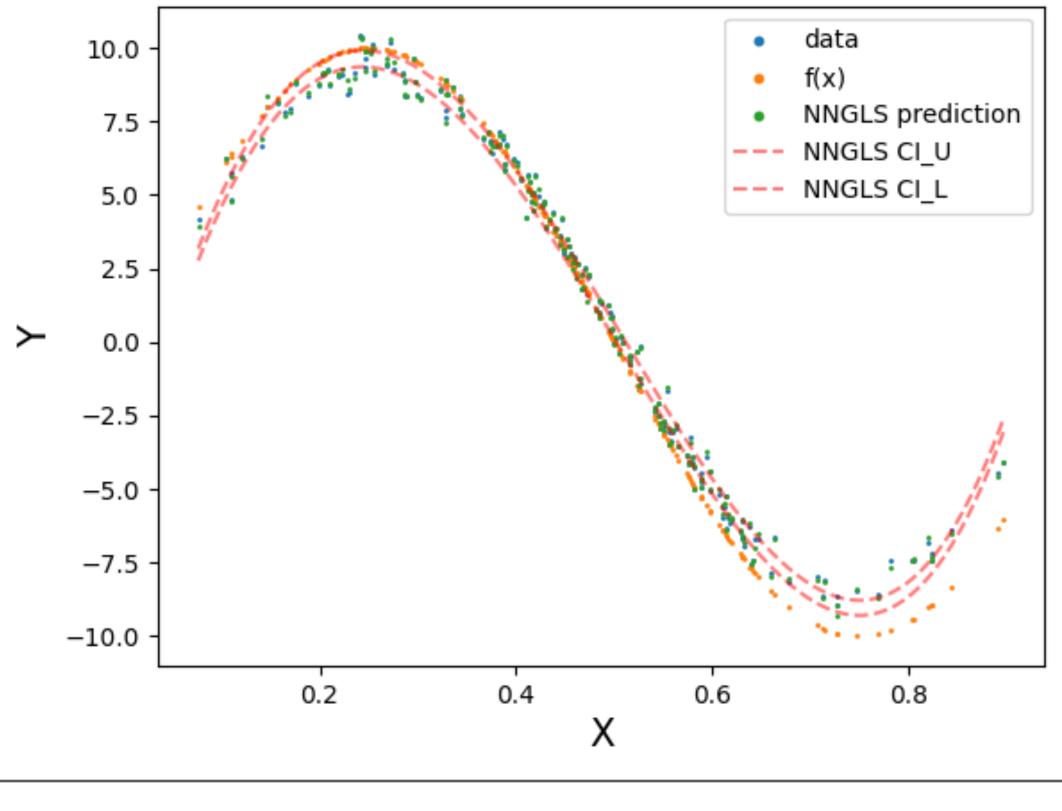
data 10.0 NNGLS prediction 7.5 5.0 2.5 Truth 0.0 -2.5 -5.0 -7.5 -10.0-7.5 -5.0 -2.5 7.5 2.5 5.0 10.0 0.0 Prediction

IBC 2024

Prediction: geospaNN.nngls.predict

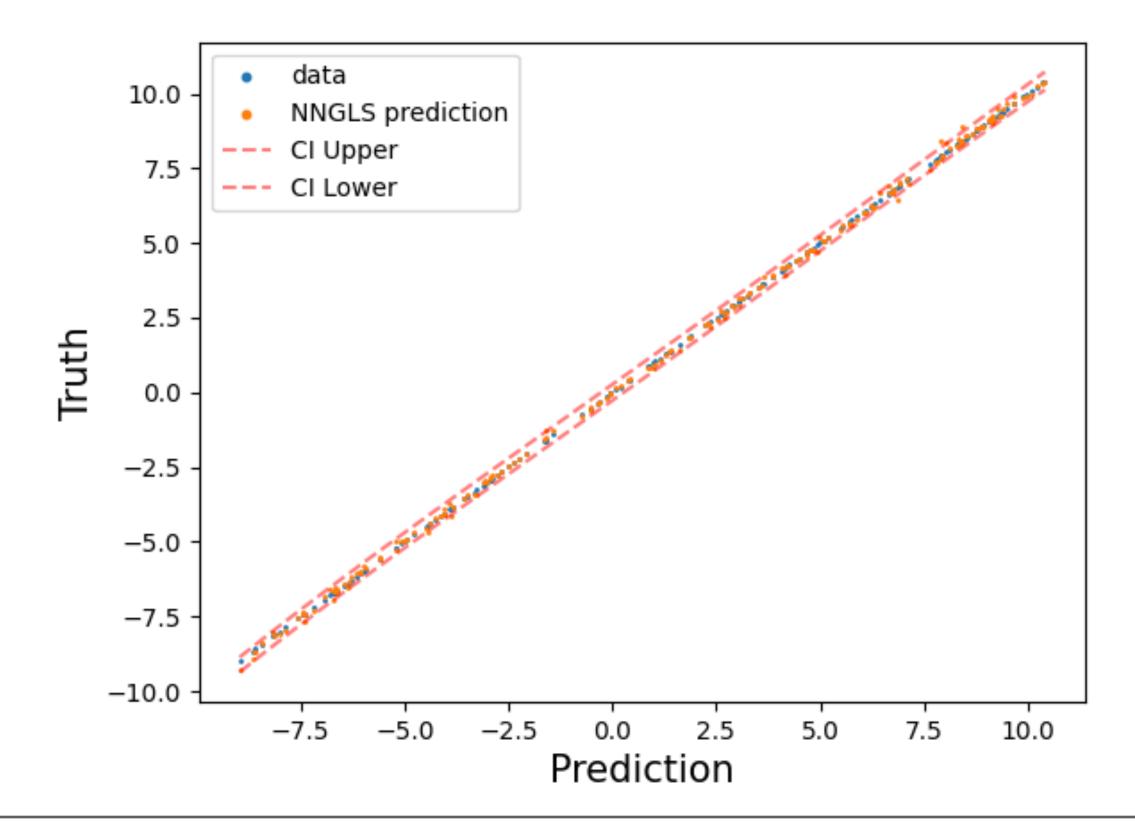
Efficient prediction through nearest neighbor kriging:

[test_predict, test_CI_U, test_CI_L] = model.predict(data_train, data_test, CI = True)



Wentao Zhan

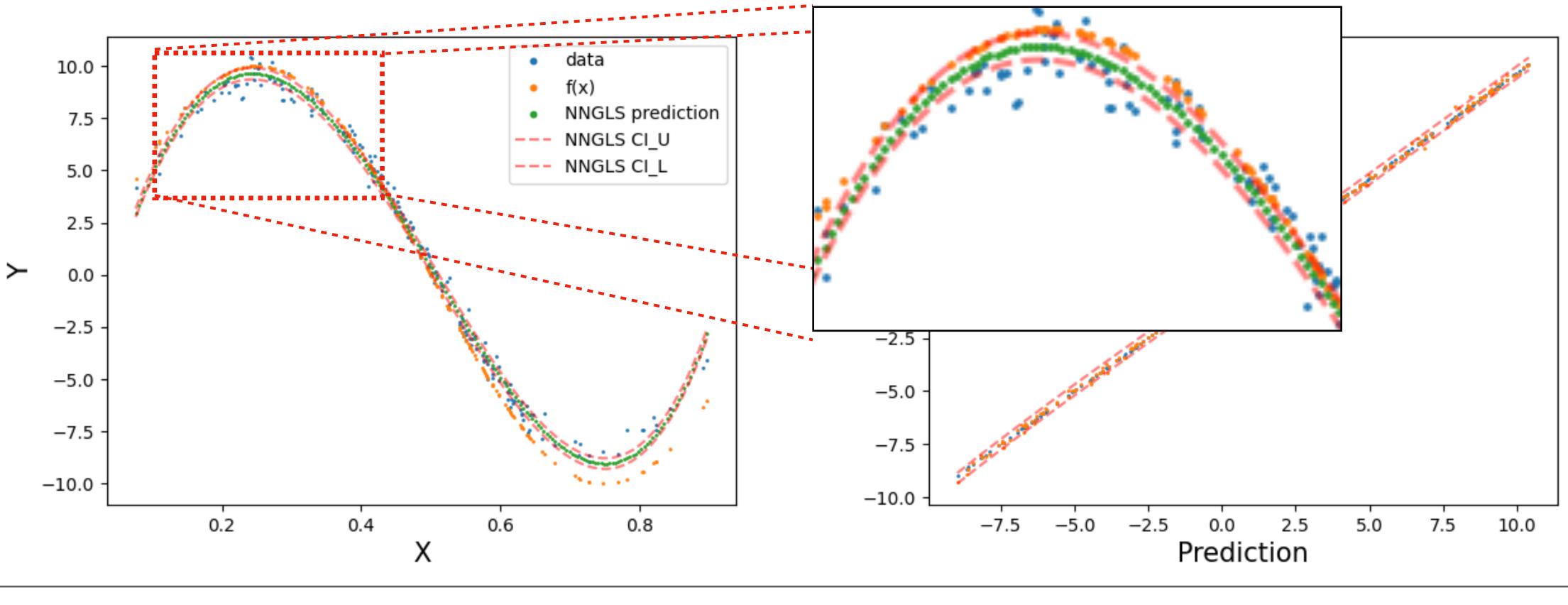
Short course on geospatial machine learning



Prediction: geospaNN.nngls.predict

Efficient prediction through nearest neighbor kriging:

[test_predict, test_CI_U, test_CI_L] = model.predict(data_train, data_test, CI = True)



Wentao Zhan

Short course on geospatial machine learning

IBC 2024

PDP (Partial Dependency Plot)

Partial Dependence plot shows the dependence between the target

function $m(X_1, \dots, X_p)$ and a set of individual features X_i .

$$PD(m, X_i) = \int m(X_1, \cdots, X_p) P(X_{-i}) dX_{-i}$$

Example: Friedman's function: $m(X) = (10 \sin(\pi X_1 X_2) +$

Wentao Zhan

Short course on geospatial machine learning

$$20(X_3 - 0.5)^2 + 10X_4 + 5X_5)/6$$

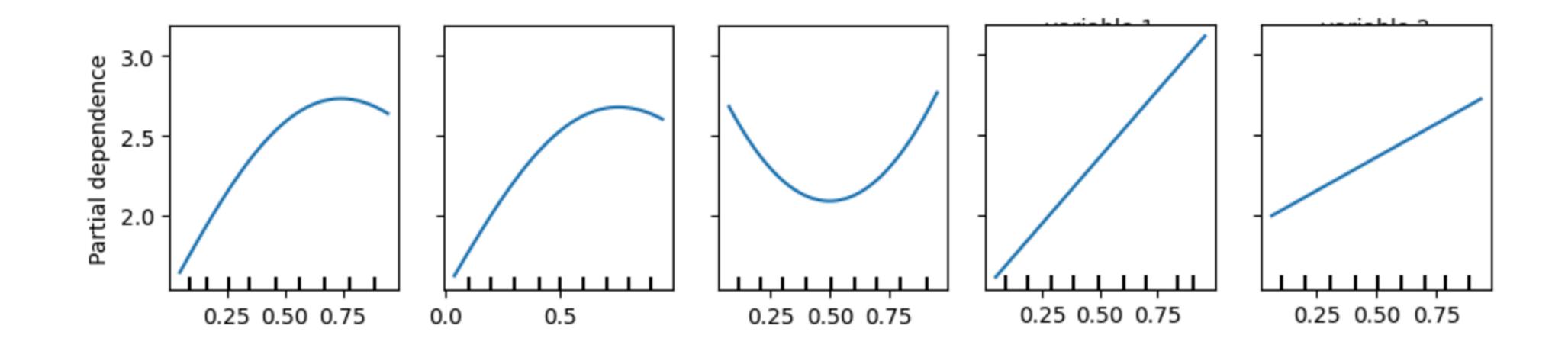
PDP: geospaNN.plot_PDP

Example: Friedman's function:

$$m(X) = (10\sin(\pi X_1 X_2) +$$

def f5(X): return (10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) / 6

PDP_truth = geospaNN.visualize.plot_PDP(funXY, X, names = ["PDP"], save_path = path, save = True)



Wentao Zhan

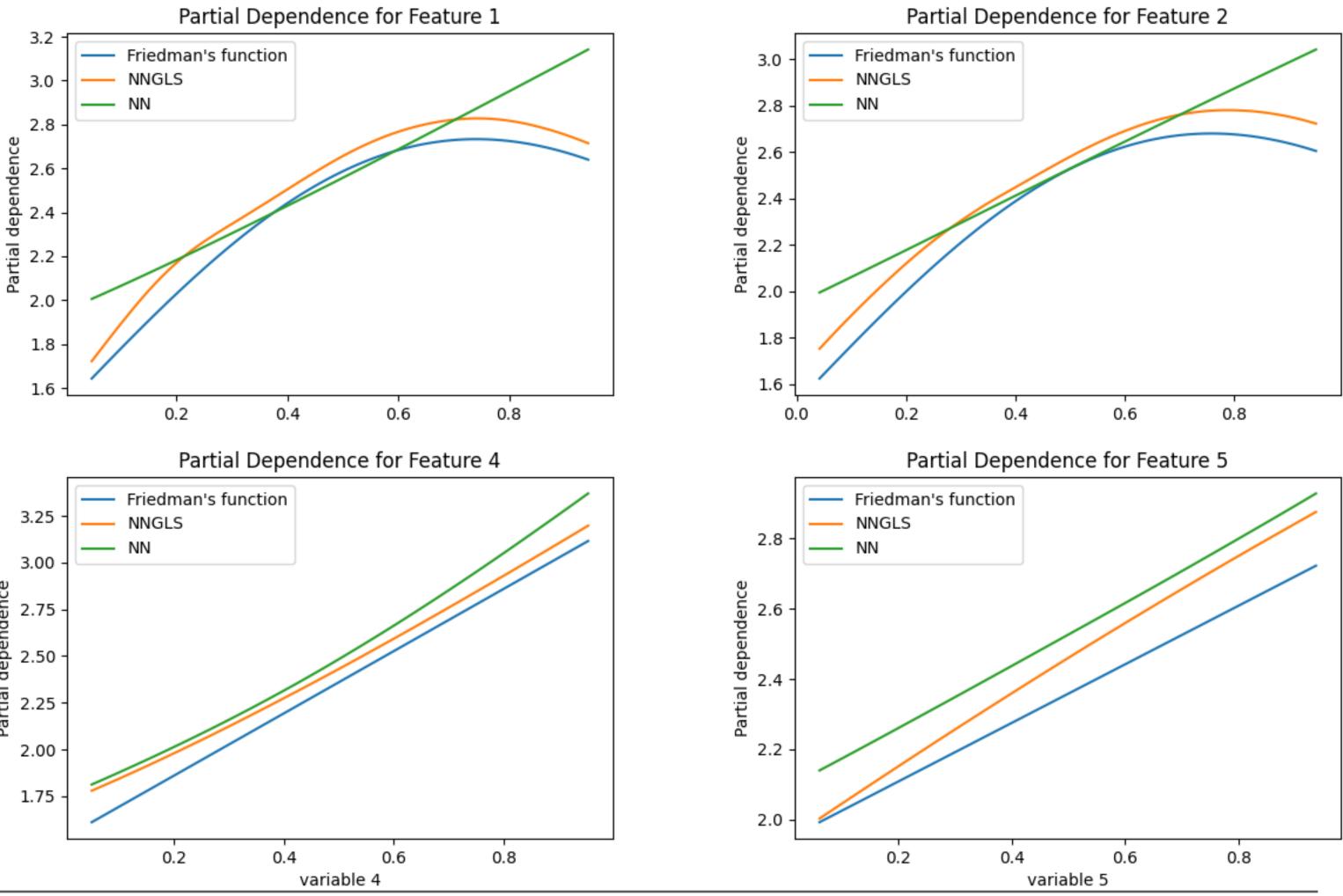
Short course on geospatial machine learning

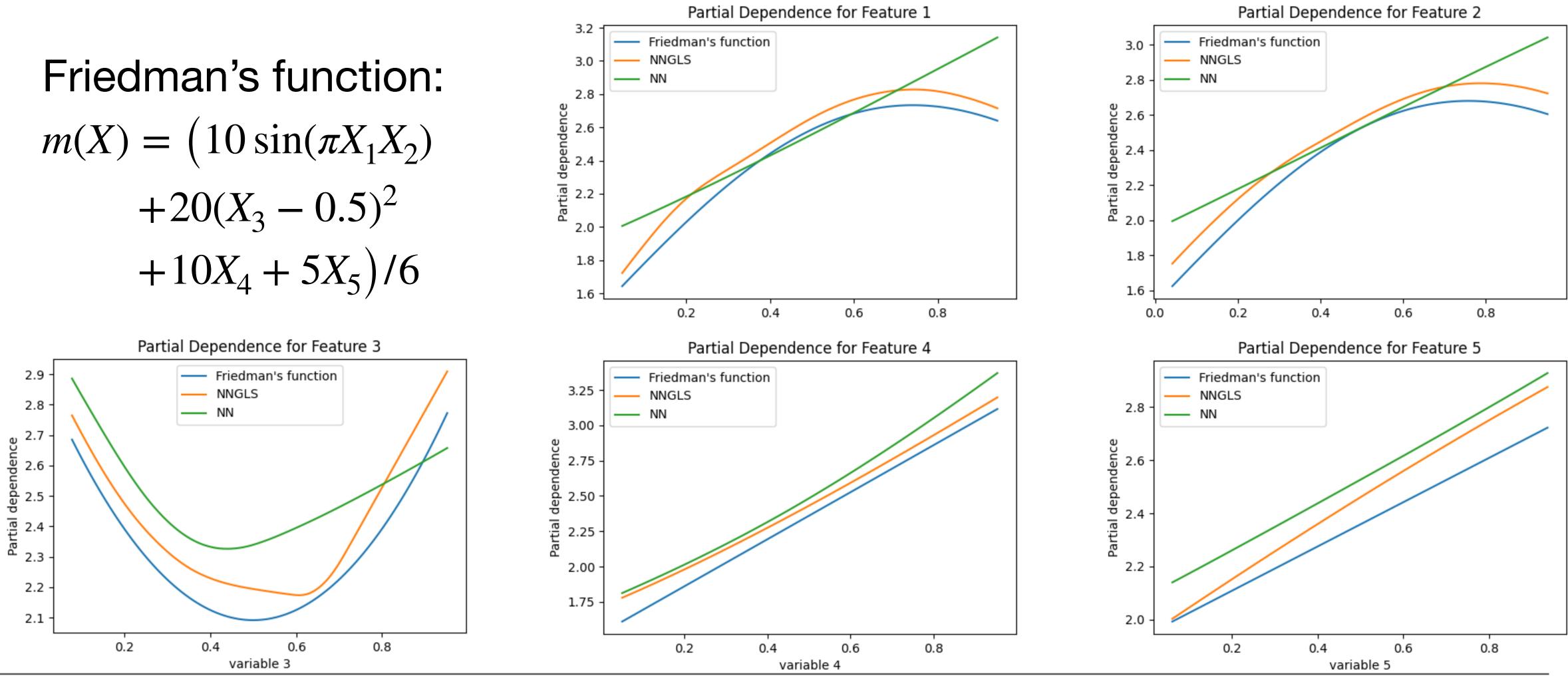
$20(X_3 - 0.5)^2 + 10X_4 + 5X_5)/6$

PDP: geospaNN.plot_PDP_list

geospaNN.visualize.plot_PDP_list([funXY, mlp_nngls, mlp_nn], ['Friedmans function', 'NNGLS', 'NN'], X, split = True)

 $+20(X_3 - 0.5)^2$





Wentao Zhan

Short course on geospatial machine learning

Outline

- 1. Basic functions
- 2. Simulation examples
 - **A. General Architecture design**
 - B. NNGLS handles complex interaction
 - C. NNGLS vs add-covariate approaches
- 3. Real data example

Short course on geospatial machine learning

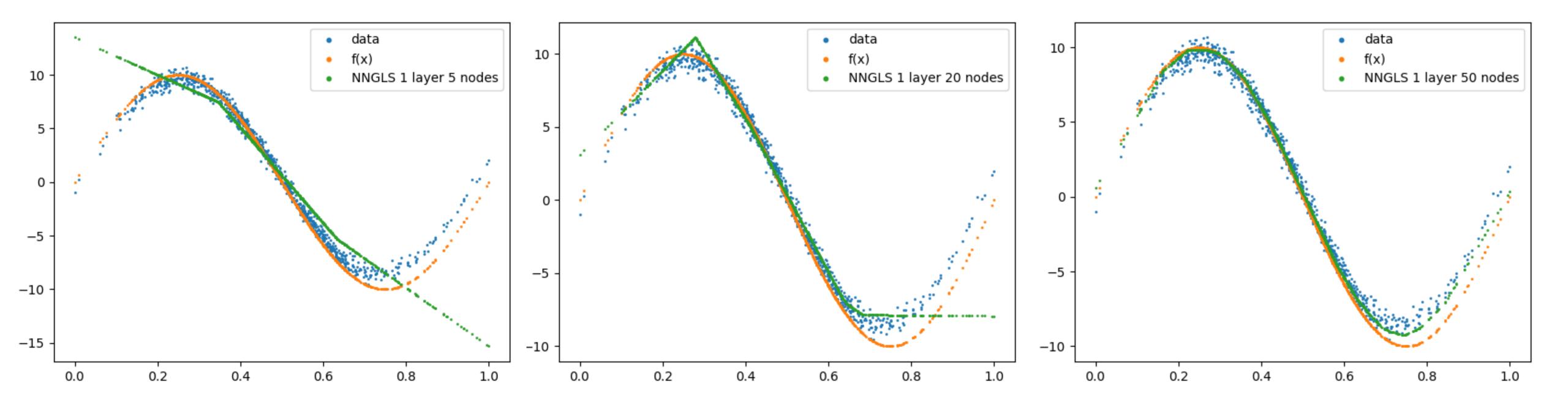
Architecture design

How to choose among architectures?

Short course on geospatial machine learning

Architecture design: width

K = 5



Wentao Zhan

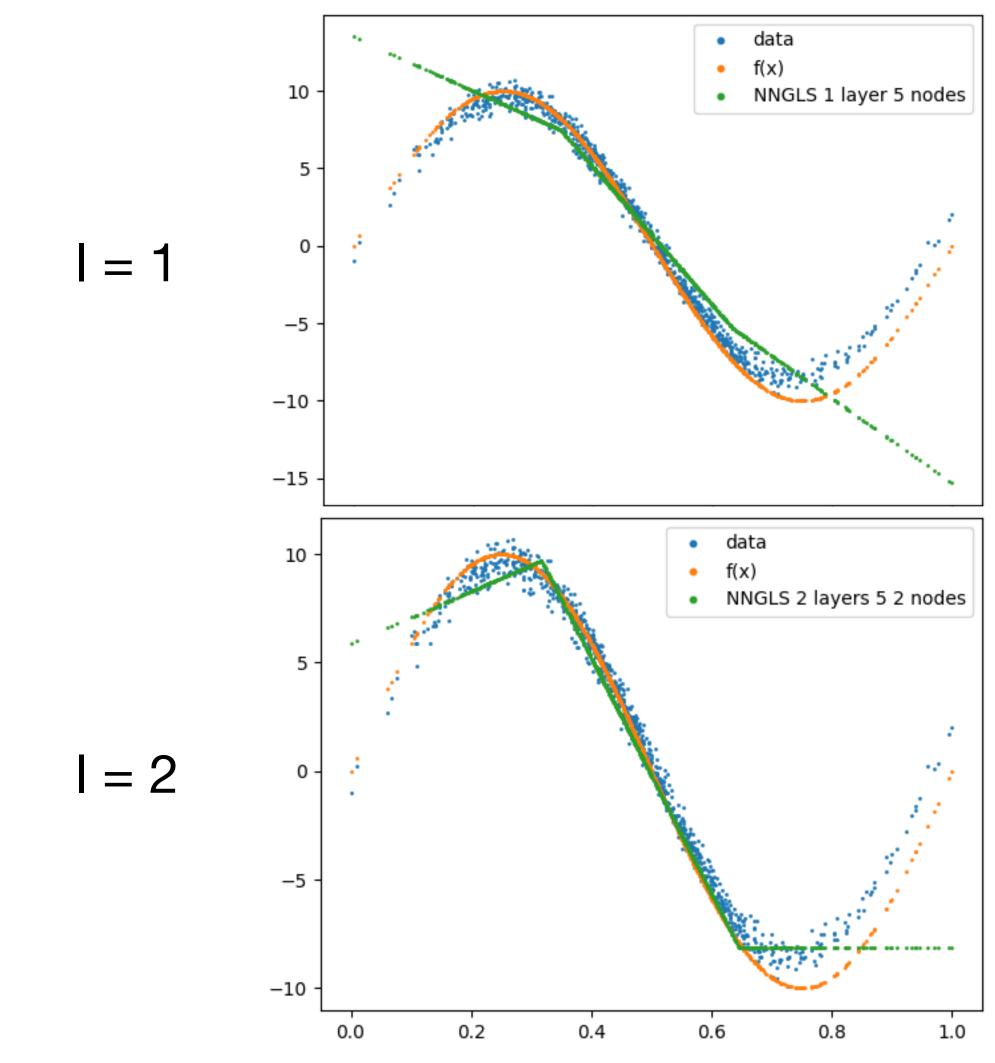
Short course on geospatial machine learning

K = 20

K = 50

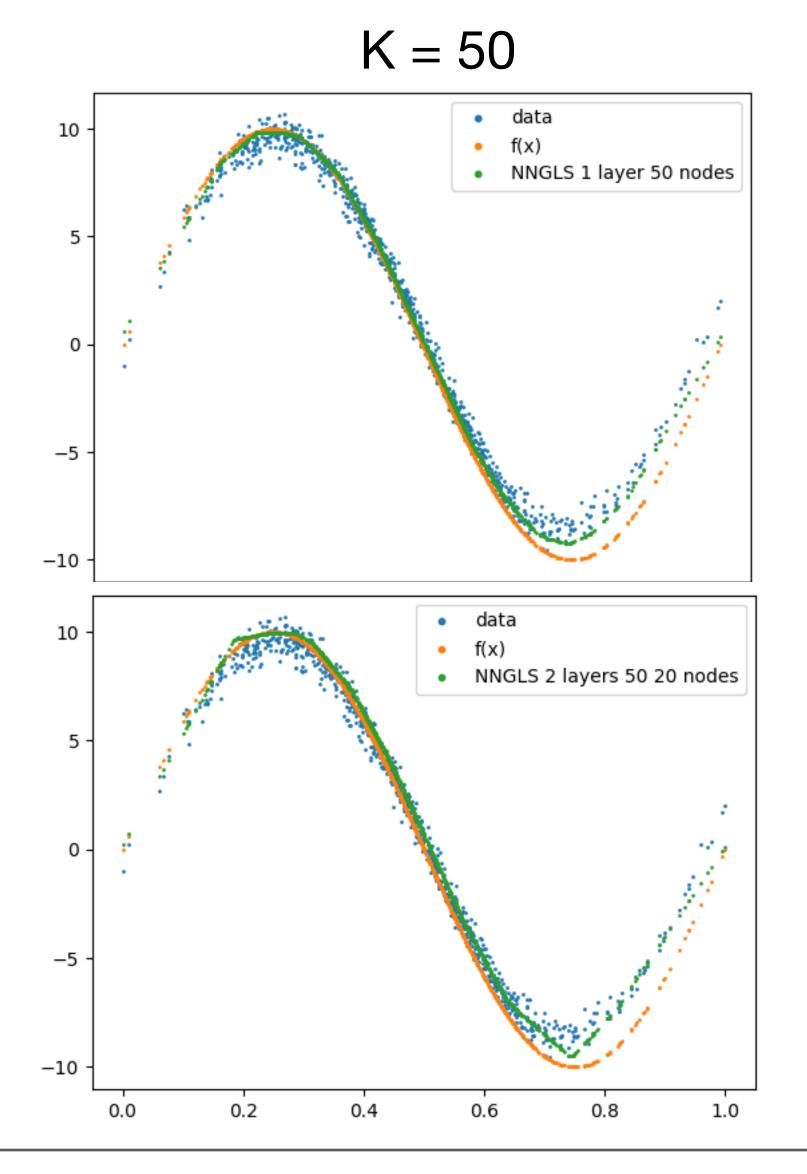
Width of a layer

Architecture design: width & depth

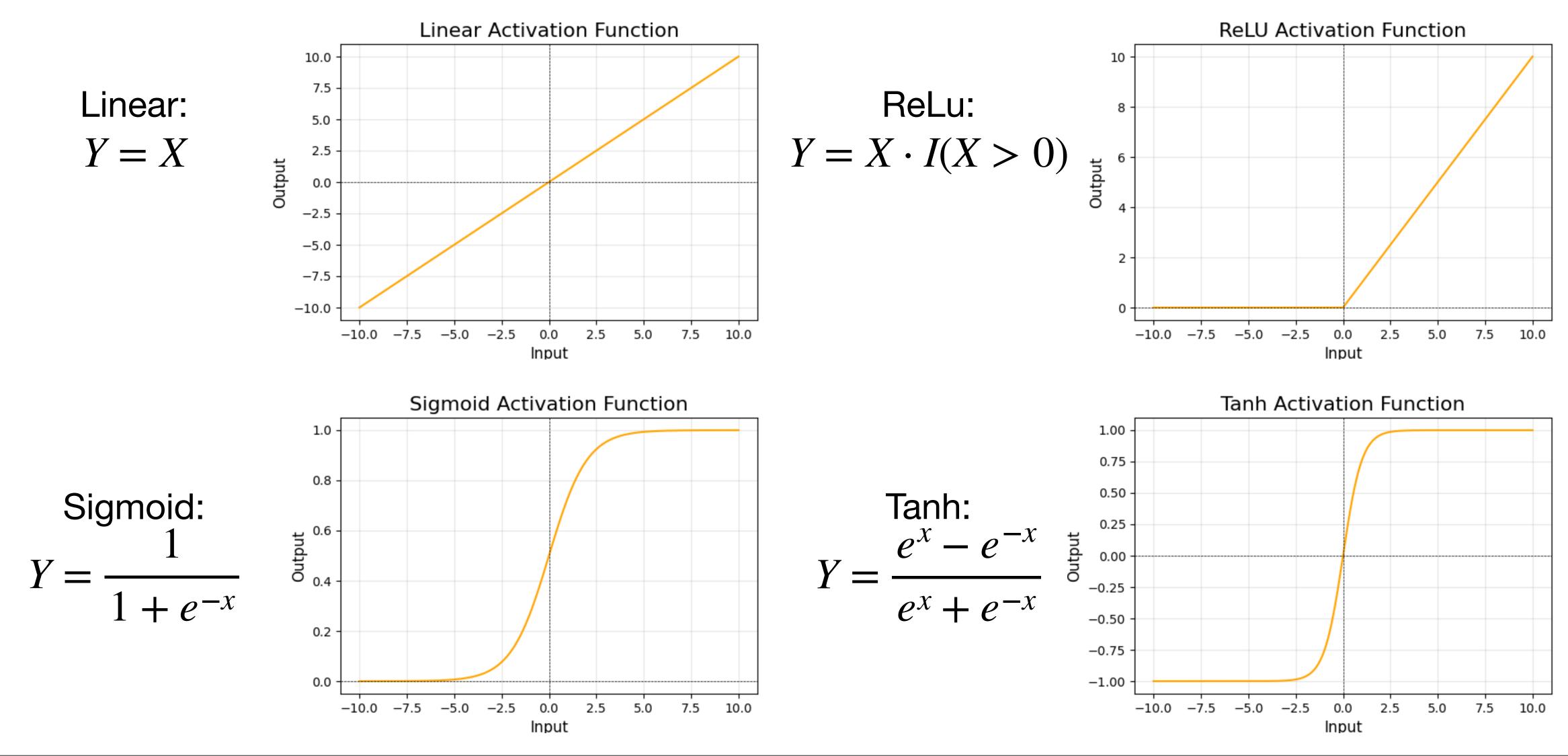


Wentao Zhan

Short course on geospatial machine learning



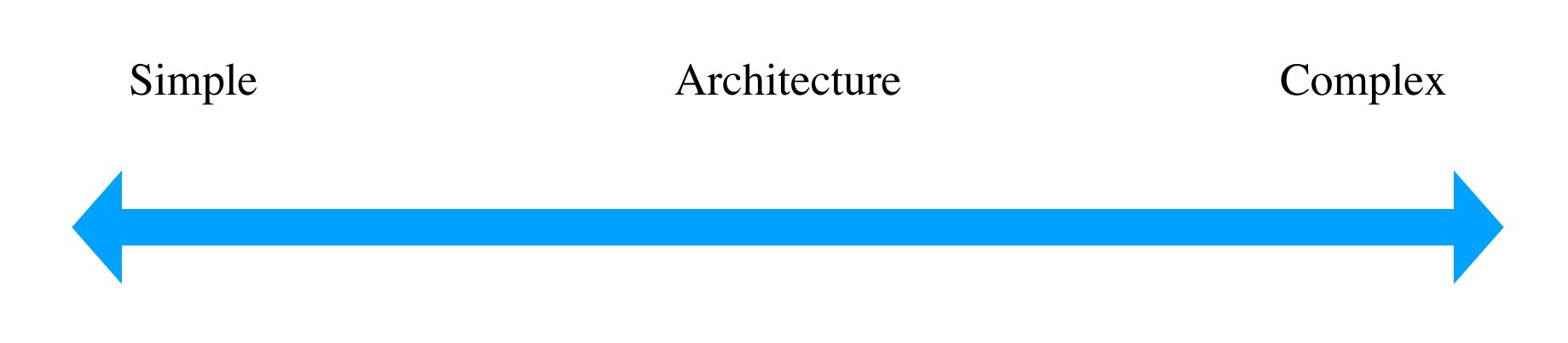
Architecture design: Activation functions



Wentao Zhan

Short course on geospatial machine learning

Architecture design



Easier training, lower power

- Get a rough sense of the target function.
- Increase the number of width of the layers gradually.
- Choose non-linear activation functions properly (ReLU recommended)
- Try until no significant improvement is gained from increasing complexity. \bullet

Finer tuning, deeper structure

Short course on geospatial machine learning

Outline

- 1. Basic functions
- 2. Simulation examples
 - A. General Architecture design
 - **B. NNGLS handles complex interaction**
 - C. NNGLS vs add-covariate approaches
- 3. Real data example

Short course on geospatial machine learning

Compare with GAM

GAM (generalized additive models) is a common non-linear estimator.

m(X) = b

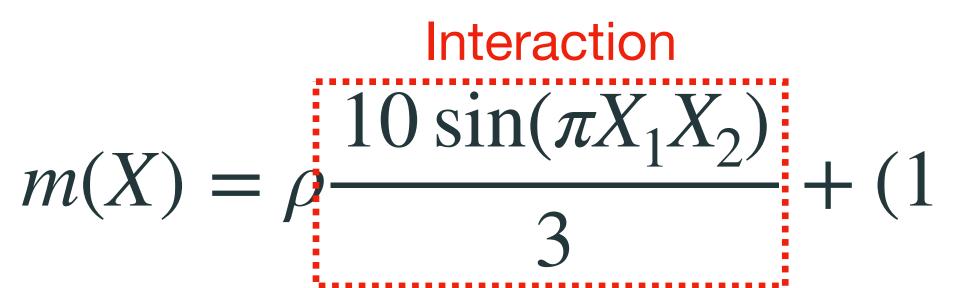
Where b_k ()'s are usually basis functions (for example B splines).

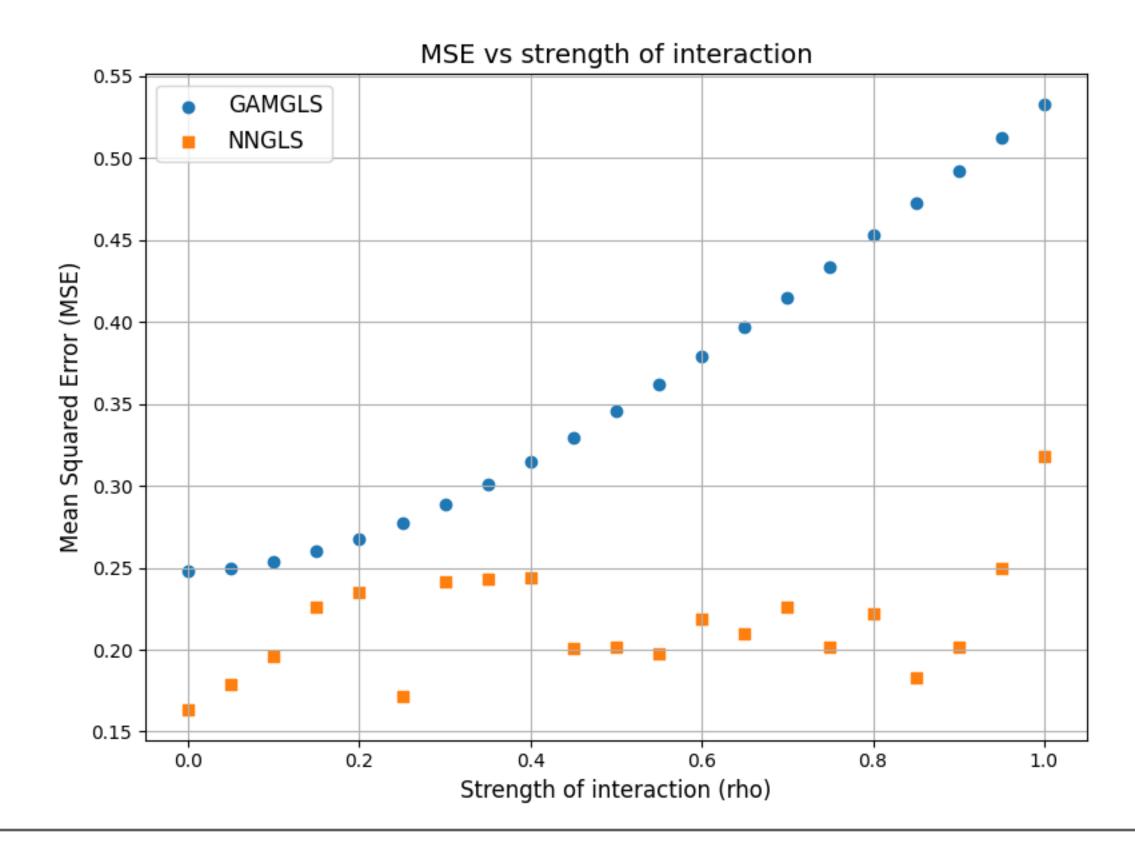
GAM assumes additive effects from X_1, \dots, X_p .

NN (NN-GLS) should outperform GAM (GLS version of GAM) by considering interaction terms.

$$p_0 + \sum_{k=1}^p b_k(X_k)$$

GAM and the interaction term

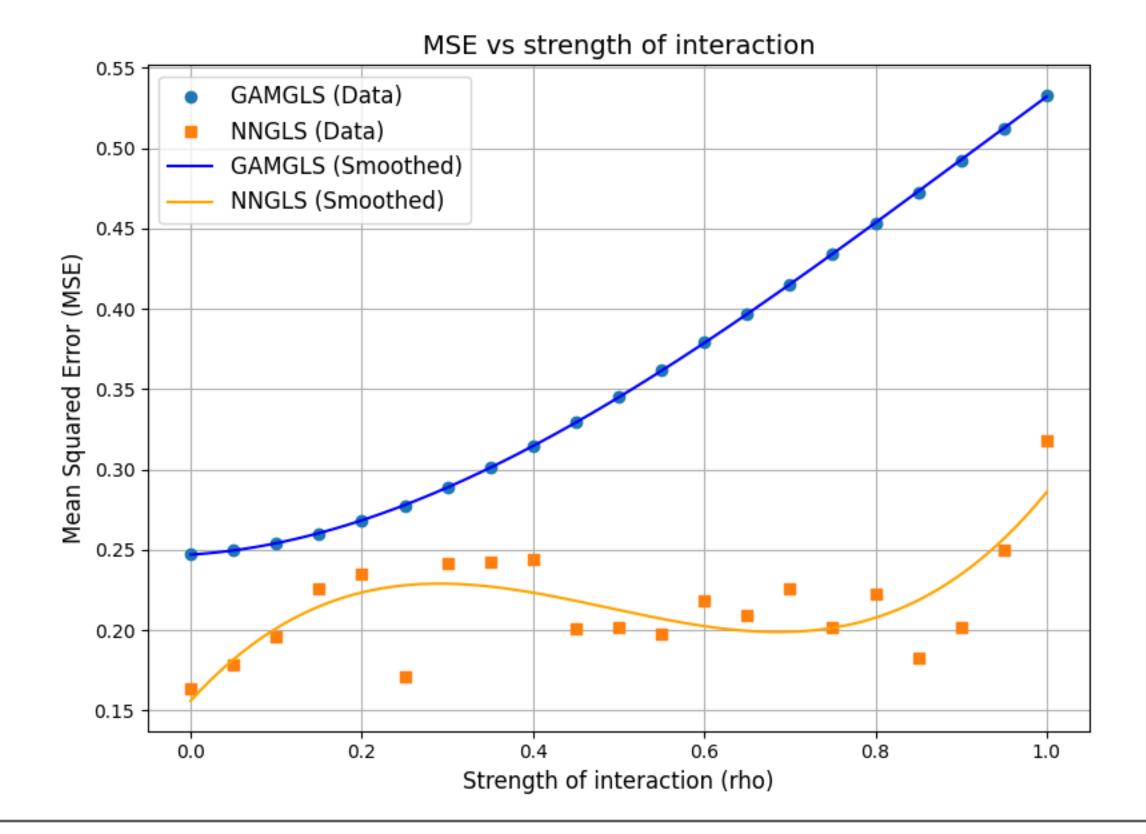




Wentao Zhan

Short course on geospatial machine learning

$\frac{10\sin(\pi X_1 X_2)}{2} + (1-\rho)\frac{20(X_3 - 0.5)^2 + 10X_4 + 5X_5)}{2}$



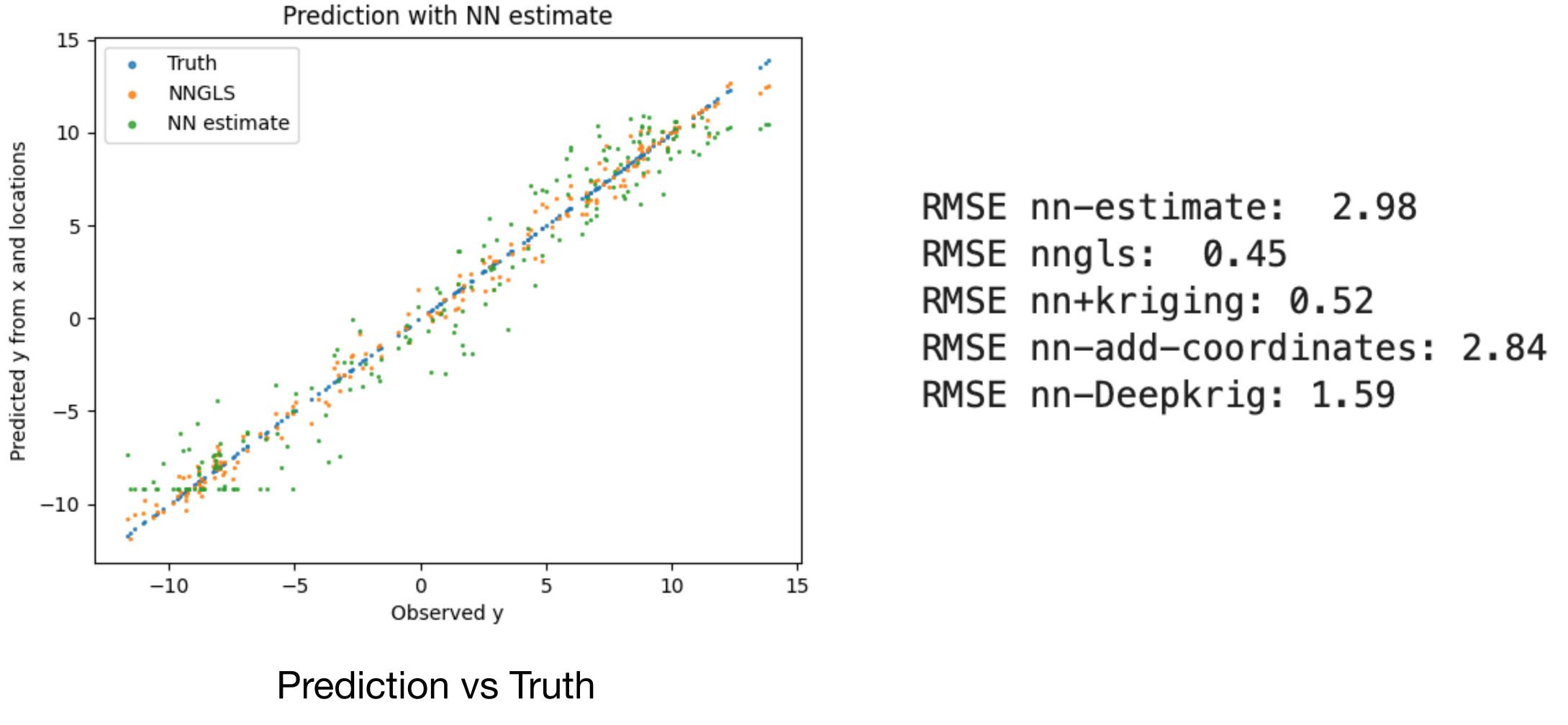
Outline

- 1. Basic functions
- 2. Simulation examples
 - A. General Architecture design
 - B. NNGLS handles complex interaction
 - **C. NNGLS vs added-spatial-features approaches**
- 3. Real data example

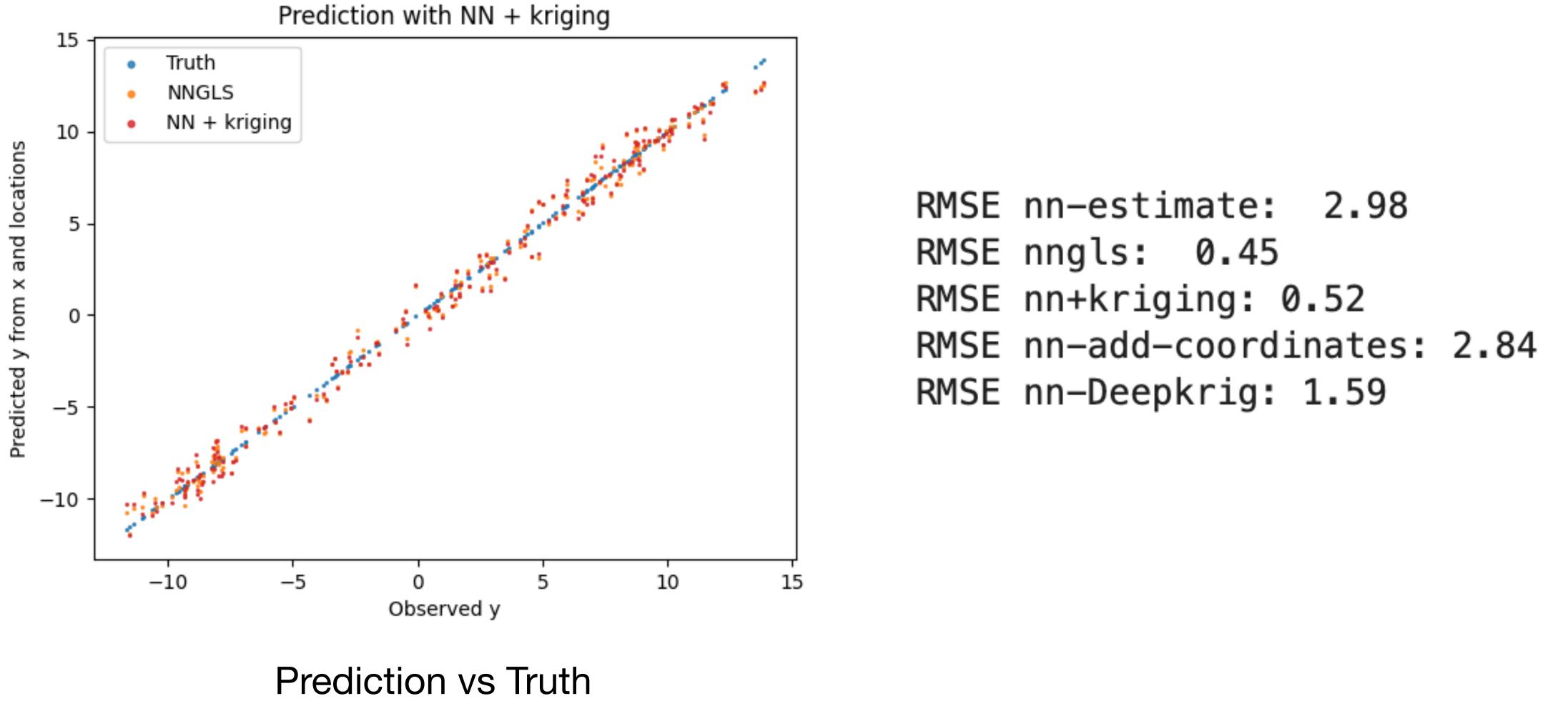
Short course on geospatial machine learning

Added-spatial-features approaches:

- Model the spatial response Y(X(s)) as a fixed function of (X, s) $Y_i(s) = m(X_i(s)) + w(s) + \epsilon(s) = g(X_i, b(s)) + \tilde{\epsilon}(s)$
- Where m(s) can be location, distance, or splines purely from *s*;
- $g(\cdot, \cdot)$ is used to predict at new location, but not able to separate fixed effect and spatial effect.
- Chen et.al. (2024) shows spline expansion is asymptotically equivalent to kriging (DeepKriging).

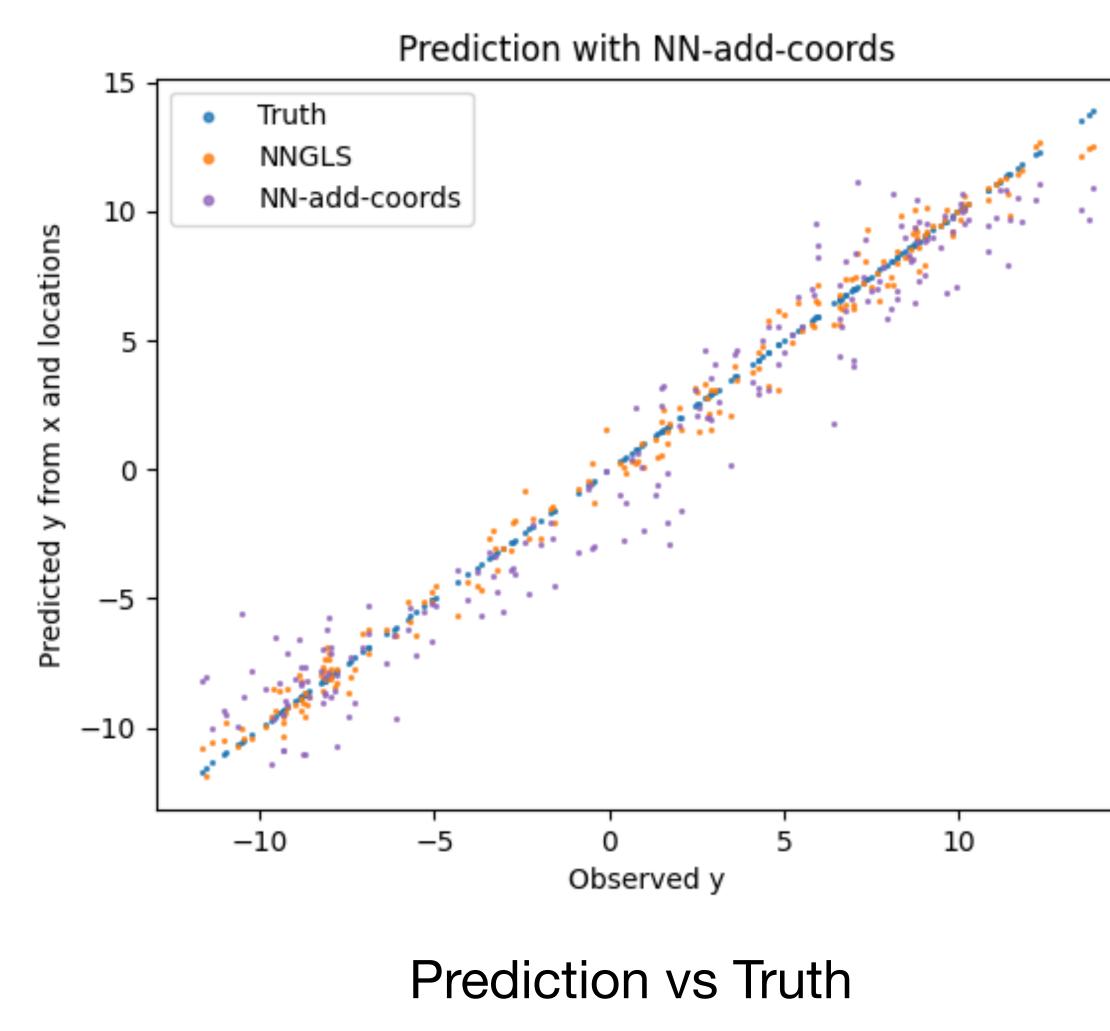


Wentao Zhan



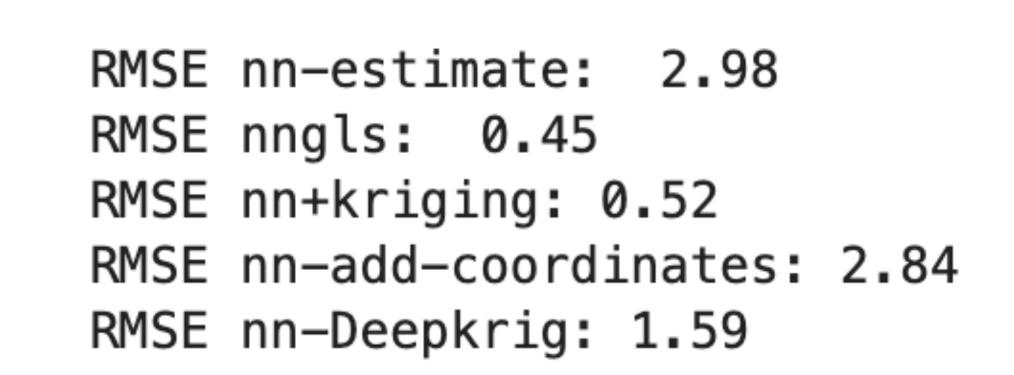
Wentao Zhan

Short course on geospatial machine learning

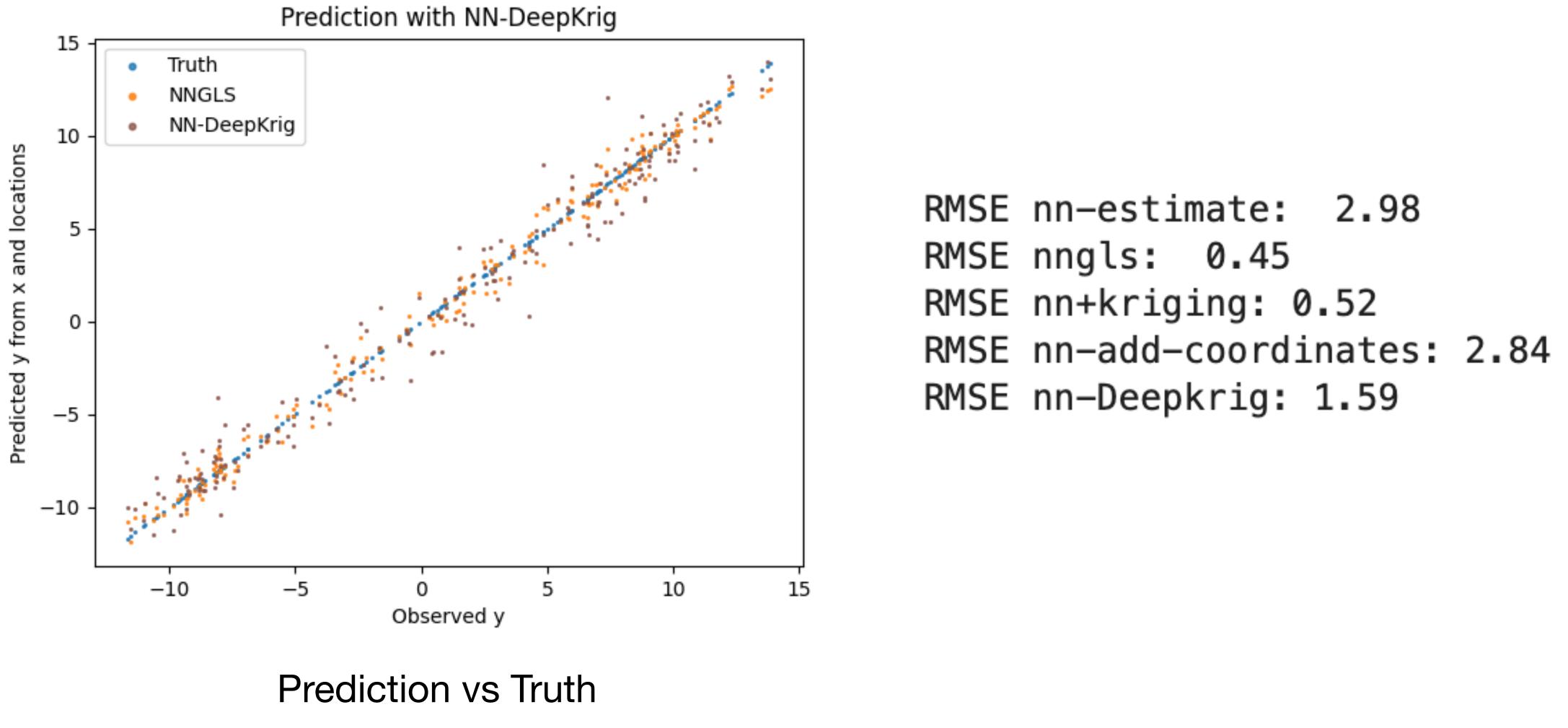


Wentao Zhan

Short course on geospatial machine learning

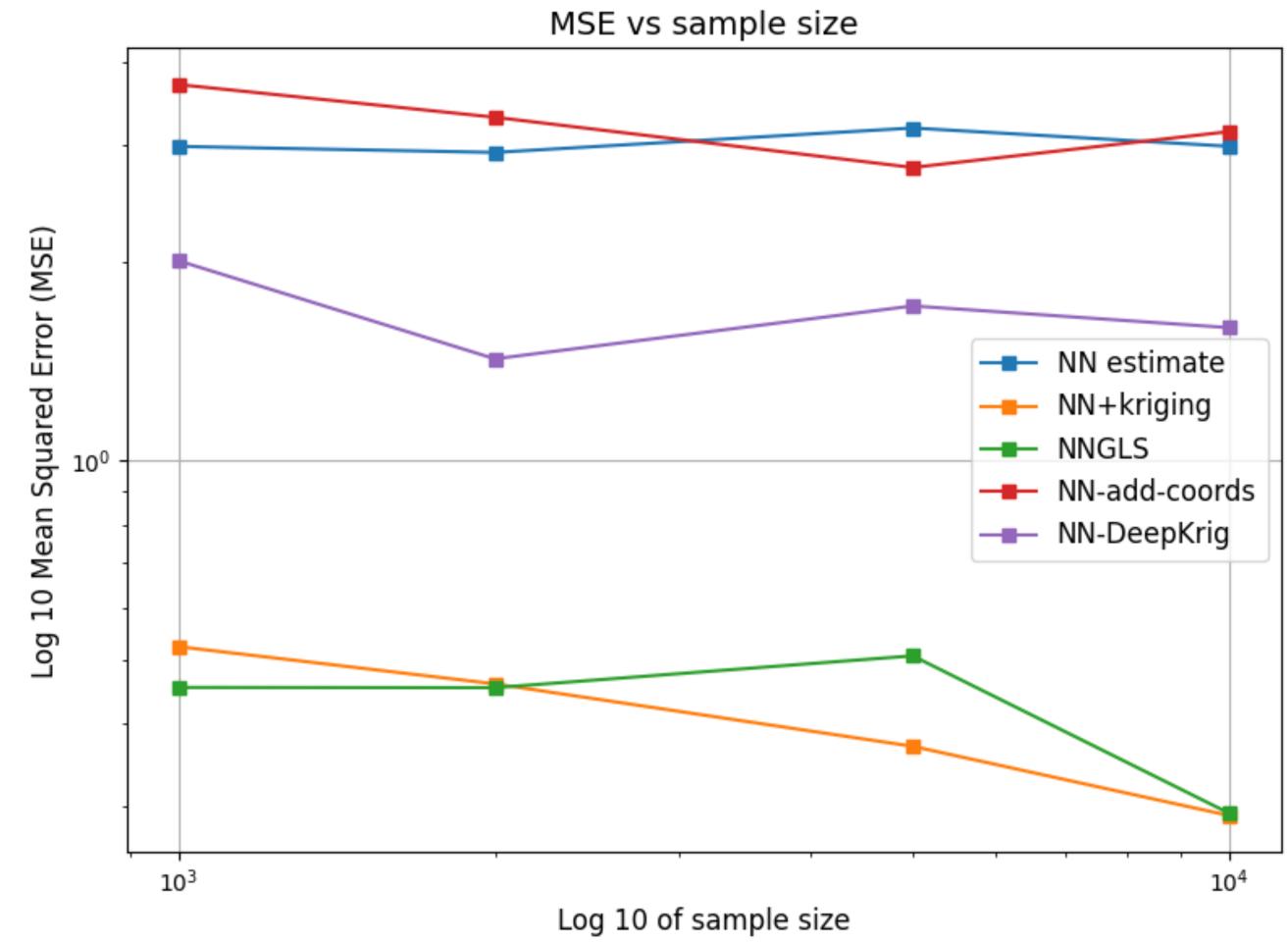


15



Wentao Zhan

Short course on geospatial machine learning



Prediction performance agains sample size

Short course on geospatial machine learning

Wentao Zhan

Outline

- 1. Basic functions
- 2. Simulation

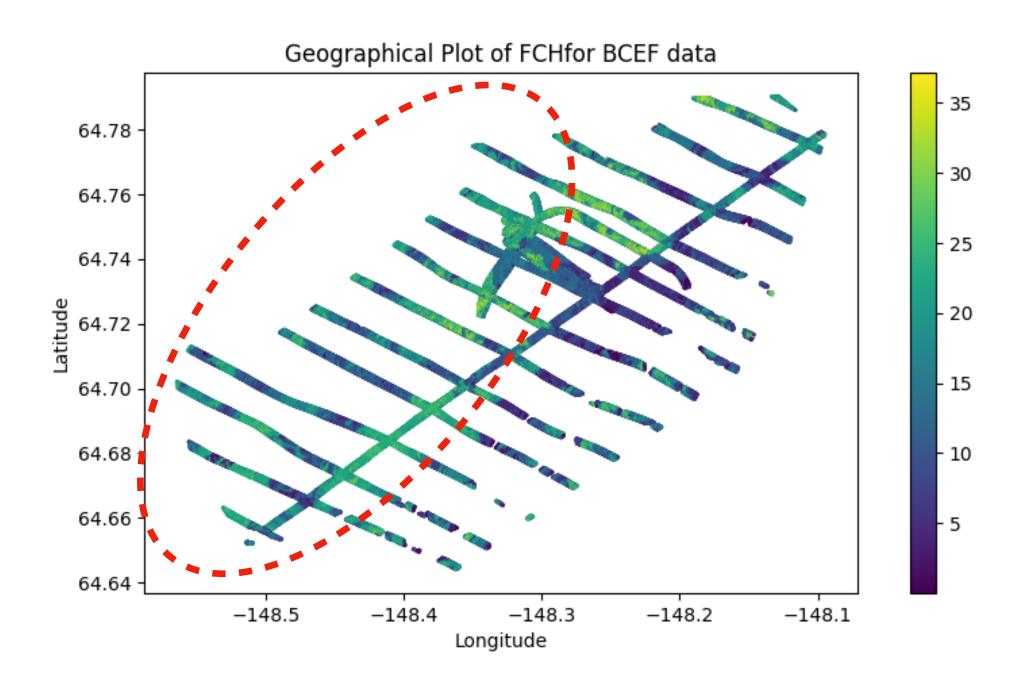
3. Real data example

Wentao Zhan

Short course on geospatial machine learning

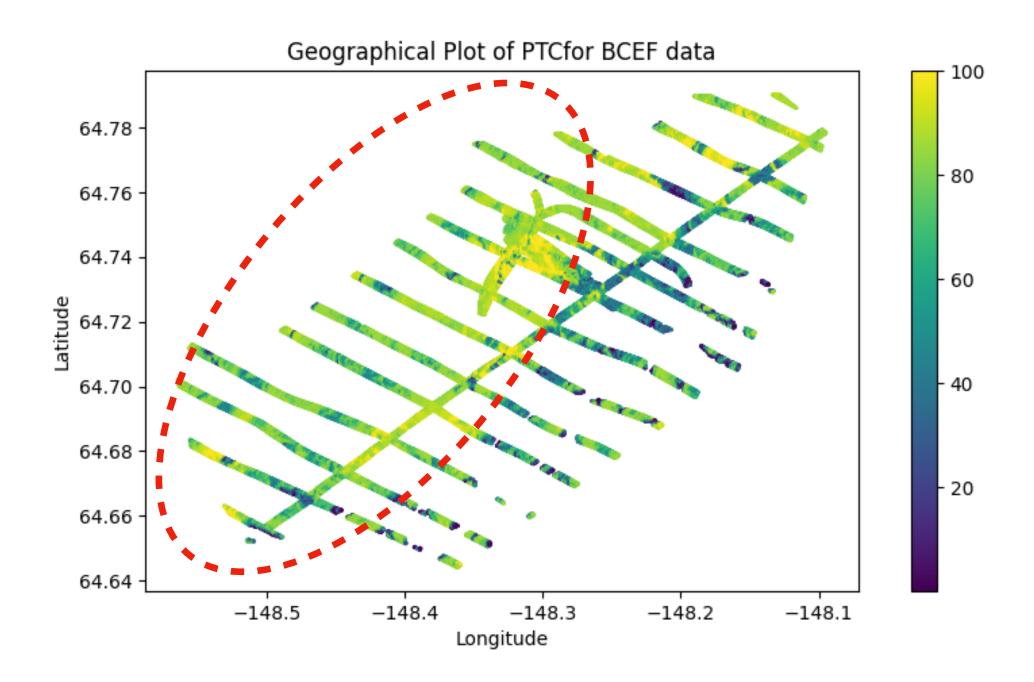
BCEF data: choice of "testing area"

Sample size 30k (a subsample of the whole BCEF data). Running time: 3 minutes.

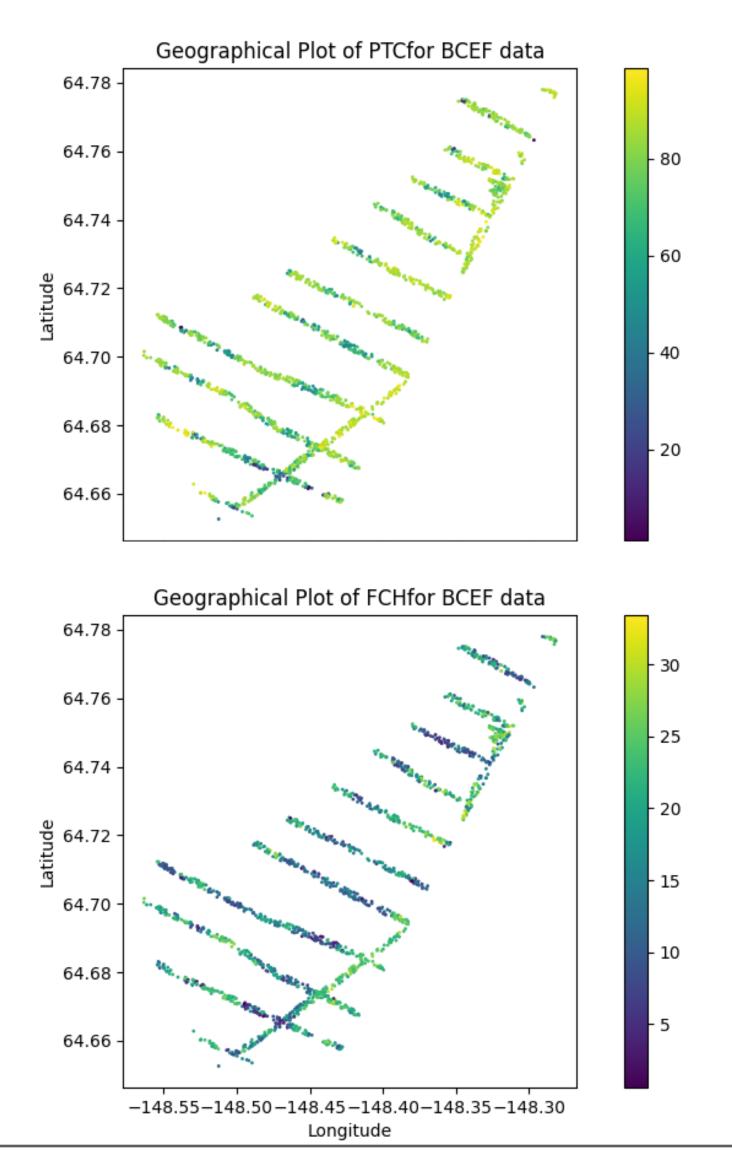


Wentao Zhan

Short course on geospatial machine learning



Training testing splitting:



Wentao Zhan

Short course on geospatial machine learning

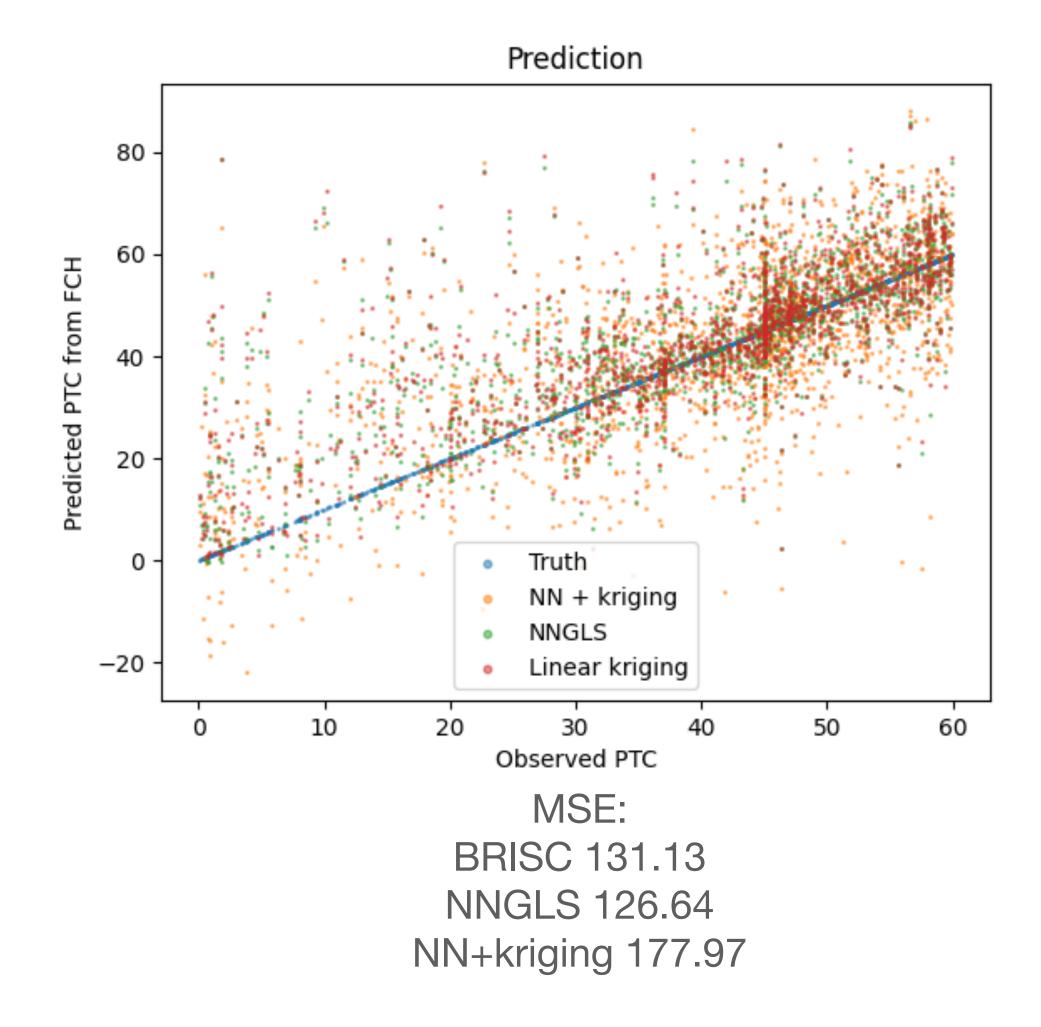


BCEF: special random split

PTC < 60%, FCH < quantile(FCH, 0.3), restricted in the testing area



Wentao Zhan



Short course on geospatial machine learning

References

Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2003). *Hierarchical modeling and analysis for spatial data*. Chapman and Hall/CRC.

Chen, W., Li, Y., Reich, B. J. and Sun, Y. (2024), *Deepkriging: Spatially dependent deep neural networks for spatial prediction,* Statistica Sinica 34, 291–311.

Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). *Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets*. Journal of the American Statistical Association, 111(514), 800-812.

Zhan, W., & Datta, A. (2024). Neural networks for geospatial data. Journal of the American Statistical Association, (In press), 1-21.

Thanks