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Stands for: Geospatial Neural Networks.




  Pypi: https://pypi.org/project/geospaNN/


GeospaNN
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https://wentaozhan1998.github.io/geospaNN-doc/
https://pypi.org/project/geospaNN/


1. Basic features 

2. Simulation


3. Real data example


Outline
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Start point: what we have?
Point process: 

• Data: 

-  : scalar response

-  : -dimensional 


covariate

-  : location


 


                                                                                                           

(Yi, Xi, si) : i = 1,…, n
Yi
Xi d

si
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Simulate data: input

 



• “p”: Dimension of the input.


• “funXY”: 1-D function 


• 


• 


Yi(s) = m(Xi(s)) + w(s) + ϵ(s)

m : X ∈ Rp → Y ∈ R
Y = m(X) = 10 sin(2πX), X ∈ R

Y = m(X) = 1
6 (10 sin(πX1X2) + 20(X3 − 0.5)2 + 20X4 + 5X5)), X ∈ [0,1]5
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Simulate data: geospaNN.Simulation

 



• “n”: Number of spatial locations.

• “nn”: Number of nearest neighbors used for NNGP approximation. 20 recommended.


• “theta”: Spatial parameters in 


• “range”: Spatial coordinates are sampled randomly from .


Yi(s) = m(Xi(s)) + w(s) + ϵ(s)

Cov(s, t) = σ2(exp(−ϕ |s − t | ) + τ2I(s = t))
[0,1]2
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Simulate data: geospaNN.Simulation

 



“X”: (s), non-spatial covariates sampled from [0,1]

“Y”: (s), response 

“coord”: , spatial coordinates

“cov”: covariance matrix

“corerr”: , correlated effect (error) term

Yi(s) = m(Xi(s)) + w(s) + ϵ(s)
X
Y

s

w(s) + ϵ(s)
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What if we want  to also have spatial distribution? 

1: Simulate  as a spatial term.





X(s)
X(s)

Simulate data: geospaNN.Simulation
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Simulate data: geospaNN.Simulation
What if we want  to also have spatial distribution? 

2: Simulate spatial coordinates and true spatial effect.





X(s)
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Simulate data: geospaNN.Simulation
What if we want  to also have spatial distribution? 

3: Compose the response.


X(s)
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= +



 

Visualize data: geospaNN.spatial_plot_surface

Y(s) = m(X(s)) + w(s) + ϵ(s)
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Spatial ordering
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Data loader provides an efficient way to iterate over a dataset.

geospaNN.make_graph generates data loader object including:


• , ,  in spatial modeling. 

• Edge index and attributions connecting nearest neighbors.


• Allow users to pass predefined ,  neighbor index matrix.

• Objects can be called by data.x, data.y, data.pos, ……

• Key function.

X Y s

n × k k

Spatial data loader: geospaNN.make_graph
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geospaNN.split_data generates three data objects.

It’s a wrapper for:


Training-testing split: geospaNN.split_data




{Y, X, s}

{Yval, Xval, sval}{Ytrain, Xtrain, strain} {Ytest, Xtest, stest}
60% 20% 20%
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Model training: ordinary neural networks

X4

A1
41 A1

42 A1
4p1

X41
… X4pX42

…

…

… … …
Z1

41 Z1
42 Z1

4p1

Zl
41 Zl

42 Zl
4pl

Zl
22

…

O4

l1 = 100

l3 = 20

l2 = 50
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• “mlp_nn”: multi-layer perceptron (mlp) architecture

• “nn_model”: object for training process and hyper parameters.

• “lr”: learning rate. 

• “min_delta”: cutoff for “significant update”.


• “nn_model.train”: A wrapper for the common training loop.

Model training: ordinary neural networks
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• Spatial parameters are initialized and updated in training.

• “Update_init” is the initial epoch starting updating.

• “Update_step” is the gap of epochs between updates.


• Everything else than  are the same to NN. 

Cov(w(s1), w(s2)) = C(s1, s2 |θ) = σ2(exp(−ϕ |s1 − s2 | ) + τ2I(s1 = s2))

θ

Model training: NN-GLS








• geospaNN.theta_update currently call the BRISC R-package 

(Saha, & Datta, 2018) for likelihood-based parameter estimation.

How  get updated?θ
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• geospaNN.linear_GLS, as wrapper of BRISC_estimation() in R, can 

be called to solve  and  in SPLMM:

, 

β θ
Yi(s) = Xi(s)β + w(s) + ϵ(s) w(s) ∼ C( ⋅ , ⋅ |θ)

How  get updated?θ
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Yi(s) = m(Xi(s)) + w(s) + ϵ(s)



How  get updated?θ

̂θθ
Simulation Maximum likelihood

geospaNN.Simulation geospaNN.theta_update
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How  get updated in NN-GLS?θ

̂θ
Y − m̂(X)

Get Residual Maximum likelihood

geospaNN.theta_update

geospaNN.nngls_train.train

Back-propagation

̂f

X4

A1
41 A1

42 A1
4p1

X41 …
X4pX42

…

…

… … …
Z1

41 Z1
42 Z1

4p1

Zl
41 Zl

42 Zl
4pl

Z l
22

…

O4
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Training output
Training curves of validation loss and spatial parameters.
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Equivalent to “model.mlp(X)”.


Estimation: geospaNN.nngls.estimate
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Prediction: geospaNN.nngls.predict
Efficient prediction through nearest neighbor kriging:
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Prediction: geospaNN.nngls.predict
Efficient prediction through nearest neighbor kriging:
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Efficient prediction through nearest neighbor kriging:


Prediction: geospaNN.nngls.predict
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PDP (Partial Dependency Plot)
Partial Dependence plot shows the dependence between the target 

function   and a set of individual features .





Example: Friedman’s function:


m(X1, ⋯, Xp) Xi

PD(m, Xi) = ∫ m(X1, ⋯, Xp)P(X−i)dX−i

m(X) = (10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5)/6
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PDP: geospaNN.plot_PDP
Example: Friedman’s function:



m(X) = (10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5)/6
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PDP: geospaNN.plot_PDP_list

Friedman’s function:






m(X) = (10 sin(πX1X2)

+20(X3 − 0.5)2

+10X4 + 5X5)/6

Wentao Zhan             Short course on geospatial machine learning             IBC 2024



1. Basic functions


2. Simulation examples 

A. General Architecture design 

B. NNGLS handles complex interaction


C. NNGLS vs add-covariate approaches


3. Real data example


Outline
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Architecture design

How to choose among architectures?
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Architecture design: width

Width of a layer

K = 5 K = 20 K = 50
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Architecture design: width & depth
K = 5 K = 50

l = 1

l = 2
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Architecture design: Activation functions

Linear:

Y = X

Sigmoid:

Y = 1

1 + e−x

ReLu:

Y = X ⋅ I(X > 0)

Tanh:

Y = ex − e−x

ex + e−x
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Architecture design 

• Get a rough sense of the target function.

• Increase the number of width of the layers gradually.

• Choose non-linear activation functions properly (ReLU recommended)

• Try until no significant improvement is gained from increasing complexity.

Simple Architecture Complex

Easier training, lower power Finer tuning, deeper structure
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1. Basic functions


2. Simulation examples 

A. General Architecture design


B. NNGLS handles complex interaction 

C. NNGLS vs add-covariate approaches


3. Real data example


Outline
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Compare with GAM 
GAM (generalized additive models) is a common non-linear estimator.





Where ’s are usually basis functions (for example B splines).


GAM assumes additive effects from .


NN (NN-GLS) should outperform GAM (GLS version of GAM) by 
considering interaction terms.


m(X) = b0 +
p

∑
k=1

bk(Xk)

bk()
X1, ⋯, Xp
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GAM and the interaction term

m(X) = ρ
10 sin(πX1X2)

3 + (1 − ρ)
20(X3 − 0.5)2 + 10X4 + 5X5)

3

Interaction

Wentao Zhan             Short course on geospatial machine learning             IBC 2024



1. Basic functions


2. Simulation examples 

A. General Architecture design


B. NNGLS handles complex interaction


C. NNGLS vs added-spatial-features approaches 

3. Real data example


Outline
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Added-spatial-features approaches:  
Model the spatial response  as a fixed function of 





Where  can be location, distance, or splines purely from ;


•  is used to predict at new location, but not able to separate 
fixed effect and spatial effect.


• Chen et.al. (2024) shows spline expansion is asymptotically 
equivalent to kriging (DeepKriging).


Y(X(s)) (X, s)
Yi(s) = m(Xi(s)) + w(s) + ϵ(s) = g(Xi, b(s)) + ϵ̃(s)

m(s) s
g( ⋅ , ⋅ )
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Versus added-spatial-features approaches: 

Prediction vs Truth
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Versus added-spatial-features approaches: 

Prediction vs Truth
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Prediction vs Truth

Versus added-spatial-features approaches: 
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Prediction vs Truth

Versus added-spatial-features approaches: 
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Prediction performance agains sample size

Versus added-spatial-features approaches: 
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1. Basic functions


2. Simulation


3. Real data example 

Outline
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Sample size 30k (a subsample of the whole BCEF data).


Running time: 3 minutes.

BCEF data: choice of “testing area”
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Training testing splitting: 
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MSE: 

BRISC 131.13

NNGLS 126.64


NN+kriging 177.97

BCEF: special random split 

BRISC  = (461, 66.2, 0.001)

NN-GLS  =  (431, 70.3, 0.001)

NN-kriging  = (265, 141.7, 0.037)

(σ2, ϕ, τ)
(σ2, ϕ, τ)

(σ2, ϕ, τ)
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PTC < 60%, FCH < quantile(FCH, 0.3), restricted in the testing area
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