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Non-linear regression
 Yi = m(Xi) + ϵi

Many choices for modeling 

Basis functions

GAM

Regression trees and random forests

m
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Non-linear regression
 Yi = m(Xi) + ϵi

Many choices for modeling 

Basis functions


Curse of dimensionality with increase in covariate dimension

GAM


Cannot model interactions

Regression trees and random forests


Estimates are discontinuous

Slow for larger datasets due to requiring brute force grid search for tree 
partitioning

m
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Non-linear regression
 Yi = m(Xi) + ϵi

Many choices for modeling 

Basis functions

GAM

Regression trees and random forests

Neural networks

m
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Single layer perceptron model for :  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Single-layer perceptron
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Single layer perceptron model for :  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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Single layer perceptron model for :  
        


 and  are the weights (coefficients) 


Weights are unknown and  
are estimated

m
m(Xi) = β′ g1(W1 * Xi)
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Single layer perceptron model for :  
        


 and  are the weights (coefficients) 


Weights are unknown and  
are estimated

m
m(Xi) = β′ g1(W1 * Xi)
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Often, an intercept is included in  and each hidden layer. 

The coefficients corresponding to the intercepts are often called biases

Xi

Weights and biases
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Single layer perceptron model for :  
        


 and  are the weights (unknown)


 is a known non-linear function  
called the link or activation function

m
m(Xi) = β′ g1(W1 * Xi)
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Activation function

{



Activation functions
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Single layer perceptron model for :  
        


The output layer   
 is fitted to the response   
 to estimate the weights 
  and 

m
m(Xi) = β′ g1(W1 * Xi)
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Feed-forward Neural networks
Single layer perceptron function:  
        
m(X) = β′ g1(W1 * X)

Universal approximation theorem: Any continuous function can be 
approximated to any degree of accuracy using a single layer perceptron with 
any non-polynomial activation function (Stinchcombe et al, 1989 and others)
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Feed-forward Neural networks
Single layer perceptron function:  
        
m(X) = β′ g1(W1 * X)

Universal approximation theorem: Any continuous function can be 
approximated to any degree of accuracy using a single layer perceptron with 
any non-polynomial activation function (Stinchcombe et al, 1989 and others)

May need a very wide hidden layer with many nodes for good approximation
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Multi-layer perceptron (MLP):  
m(Xi) = β⊤gL(WL * gL−1(WL−1 * …g1(W1 * Xi)…)
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Multi-layer perceptron

Xi
{



Xi
{

Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Multi-layer perceptron (MLP):  



 hidden layers (network depth)

m(Xi) = β⊤gL(WL * gL−1(WL−1 * …g1(W1 * Xi)…)

L
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Multi-layer perceptron (MLP):  



 hidden layers (network depth)


Weights ’s and  are unknown 


Activations ’s are known


m(Xi) = β⊤gL(WL * gL−1(WL−1 * …g1(W1 * Xi)…)

L

Wl β

gl
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Feed-forward Neural networks

 Yi = m(Xi) + ϵi

Multi-layer perceptron (MLP):  



 hidden layers (network depth)


Weights are unknown, activations are known


The output layer  is fitted to the response   
 to estimate the weights  and 

m(Xi) = β⊤gL(WL * gL−1(WL−1 * …g1(W1 * Xi)…)

L

Oi = m(Xi) Yi
W1, W2, …, WL, β
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Estimation in Neural networks
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 is the collection of all the weight parameters 


The output layer 


Loss function used is      


Parameters updated using gradient descent, e.g., ( )


 is the learning rate, controls how quickly the model learns

Ψ = (W1, …, WL, β)

m(Xi) = Oi = O(Xi, Ψ)

ℓ(Ψ) =
n

∑
i=1

(Yi − m(Xi))2 =
n

∑
i=1

(Yi − Oi)2

βt+1 = βt − γ
∂ℒ
∂β

γ

Gradient descent



Estimation in Neural networks
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Parameters of last layers updated first which 
are then used to update parameters of previous 
layers


Updated parameter values  then fed-forward 
into the network to update  and evaluate the 
loss function 


Process is repeated iteratively until stopping 
criterion is reached (loss flattens out)

Ψ
Oi

ℓ(Ψ)

Backpropagation and feed-forward

Xi
{ W1

β

WL

BackpropagationFe
ed

-fo
rw

ar
d



Estimation in Neural networks
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Loss function     


Mini-batching loss:




 is a mini-batch (subsample), cycle over all such disjoint mini-batches


Stochastic gradient descent (SGD) = mini-batch size of 1


Minibatching or SGD leads to considerable speedup in estimation

ℓ(Ψ) =
n

∑
i=1

(Yi − m(Xi))2 =
n

∑
i=1

(Yi − Oi)2

ℓB(Ψ) = ∑
i∈B

(Yi − Oi)2

B

Minibatching and stochastic gradient descent



Success of Neural networks
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Theory:


Consistency of 1-layer neural networks for non-linear regression (Shen et al. 2023)


Deep neural networks (many layers) with ReLU activation outperform basis 
functions and wavelets (Schmidt-Hieber, 2020)


Highly active area of research: Farell et al. 2021, Fan et al. 2023 and others


Most work considers regression for data with iid errors and neural network 
architectures that do not make adjustments for dependence


What is the impact of ignoring data correlation on performance of neural nets ?



Challenges of neural networks for dependent data
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Non-linear regression for dependent data:

,  are dependent are errors


Loss function     


Loss function is essentially the OLS loss

Does not account for dependence in the ’s

Yi = m(Xi) + ϵi ϵi

ℓ(Ψ) =
n

∑
i=1

(Yi − m(Xi))2 =
n

∑
i=1

(Yi − Oi)2 = ∥Y − O∥2

Yi



Neural networks for geospatial analysis
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Common strategies: 


1. Residual kriging: Estimates a non-linear regression function  using 
Neural networks. 

Kriging on the residuals  for spatially-informed predictions. 


Demyanov et al. 1998, Seo et al. 2015, Tarasov et al. 2018 and others


Spatial dependence is completely ignored during estimation


E(Y) = m(X)

Yi − ̂m (Xi)



Neural networks for geospatial analysis
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Common strategies: 


2. Added spatial features: 

Creates a set  of spatial features / covariates (spatial co-ordinates, pairwise 
distances, basis functions, etc.). 

Estimates a non-linear regression function  using neural network.

Gray et al., 2022; Chen et al., 2024; Wang et al., 2019


Prediction only! Cannot estimate the spatial effect 

Does not directly model spatial correlation. Curse of dimensionality from many 
added features.


F(s)

E(Y) = g(X, F(s))

m(X)
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3. Model based approach:  


Model the non-linear  using a multi-layer perceptron:  
Retains all advantages of the traditional spatial mixed models


Interpretability and parsimony of GP 
Estimation of mean and spatial prediction (kriging)


Yi = m(Xi) + wi + ϵ*i , w ∼ GP(0,C), ϵ*i ∼iid N(0,τ2)

m m(Xi) = Oi = O(Ψ, Xi)

Neural networks for geospatial analysis



Neural networks with GLS loss
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3. Model based approach:  


Marginal model: 


For a given , MLE of  can be obtained by minimizing GLS loss: 

 where 


In practice,  can be estimated using gradient descent based on 


NN-GLS: Neural network parameter estimation using GLS loss

Yi = m(Xi) + ϵi, ϵ ∼ N(0,Σ), Σ = C(θ) + τ2I .

Y ∼ N(m(X), Σ) = N(O(Ψ), Σ)

Σ Ψ̂Ψ = arg minΨ ℓG(Ψ) ℓG(Ψ) = (Y − O(Ψ))′ Σ−1(Y − O(Ψ))

Ψ ℓG(Ψ)



Neural networks with GLS loss
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Challenges with neural network with the GLS loss 




Unlike the OLS loss , the GLS loss is not additive over datapoints 

and not amenable to minibatching


Evaluating  is expensive ( )

 

 contains unknown spatial parameters 


ℓG(Ψ) = (Y − O(Ψ))′ Σ−1(Y − O(Ψ))

∑
i

(Yi − Oi)2

Σ−1 O(n3)

Σ θ



DL Σ̃−1

The NNGP precision matrix admits the factorization 

 is diagonal with entries 

 is lower triangular and row sparse


Sparsity determined by the nearest-neighbor DAG


Σ̃−1 = L′ DL
D di
L

Nearest Neighbor Gaussian Processes

Abhi Datta             Short course on geospatial machine learning             IBC 2024



DL Σ̃−1

Use GLS loss with covariance  from Nearest Neighbor Gaussian Process (NNGP)


,  is diagonal with entries ,  is lower triangular and row sparse


Σ̃

Σ̃−1 = L′ DL D di L

Nearest Neighbor Gaussian Processes
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DL V = Σ̃−1/2

The Cholesky factor  can be computed in  time 


 has the same sparsity as 


V = Σ̃−1/2 = D1/2L O(n)

V L

Nearest Neighbor Gaussian Processes

Abhi Datta             Short course on geospatial machine learning             IBC 2024



2-NN DAG

The Cholesky factor  has same sparsity as V L

Nearest Neighbor Gaussian Processes
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V = Σ̃−1/2

Sparsity determined by the 
-nearest neighbor directed 

acyclic graph (DAG)


 unless  or 


Non-zero ’s are nearest-
neighbor kriging weights 
and depend on 

m

Vij = 0 i → j i = j

Vij

θ



GLS loss using NNGP covariance
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NN-GLS loss with NNGP covariance matrix: 
(Y − O)′ Σ̃−1(Y − O)

GLS loss between  and  =  
OLS loss between decorrelated response  and  with 


Y O
Y* = VY O* = VO V = Σ̃−1/2

NN-GLS loss:  where ∑
i

(Y*i − O*i )2 Y*i = vi(θ)TYN*(i)

Non-zero ’sVij  and its neighbors Yi YN(i)
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Decorrelation in NNGP = Multiplication by the sparse Cholesky factor 

                 = Graph convolution on the nearest neighbor DAG 
                    with convolution weights 

V

vi(θ)

NN-GLS loss: ,  is the decorrelated response∑
i

(Y*i − O*i )2 Y*i = vi(θ)TYN*(i)

2-NN DAG Decorrelated response

GLS loss using NNGP covariance
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Graph neural network
Graph neural networks (GNN) are used when variables have a graphical 
relationship


Graph convolution: New nodes are created by aggregating variables over their 
graph neighborhoods



NN-GLS as a graph neural network (GNN)
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NN-GLS loss: ∑
i

(Y*i − O*i )2

2-NN DAG Decorrelated response

Y*i = vi(θ)TYN*(i)

O*i = vi(θ)TON*(i)

Decorrelated outputBoth  and  are created by graph aggregation Y*i O*i

O*3

O3

O2

O1



NN-GLS as a graph neural network (GNN)
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NN-GLS model with NNGP 
covariance: 


Can be represented as a special type 
of GNN


Multi-layer perceptron for modeling the 
mean 


Modeling covariance  is equivalent to 
adding two graph aggregation layers 
based on NN-DAG and kriging weights

Y ∼ N(m(X), Σ̃)

m

Σ̃

MLP

Graph  
convolution 

layers



NN-GLS as a graph neural network (GNN)
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Mini-batching:

MLP

OLS 
loss

Graph  
convolution 

layers

The OLS loss  can 

be split into minibatches 


MLP parameters (weights) updated 
using minibatch GLS loss:

n

∑
i=1

(Y*i − O*i )2

∑
i∈B

(Y*i − O*i )2



NN-GLS as a graph neural network (GNN)
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Spatial parameter estimation:

MLP

Graph  
convolution 

layers

Spatial covariance parameters  
only appear in the two graph 
convolution layers as kriging-based 
graph convolution weights 

Negative log-likelihood from the 
model  for updating 

 is GLS loss + 

θ

Y ∼ N(m(X), Σ̃)
θ log(det(Σ̃))

θ

θ



NN-GLS as a graph neural network (GNN)
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Prediction (kriging):

For NN-GLS using NNGP, predictive distribution at a new location  is given by 

 

 nearest neighbors of  among 


Kriging mean: 

Kriging variance: 

 is the MLP estimate of 

s0

Y(s0) | Y, θ, β = N (μ(s0), σ2(s0))
N0 = m s0 s1, …, sn

μ(s0) = ̂m (X(s0)) + C(s0, N0)Σ−1
N0,N0

(YN0
− ̂m (XN0

))

σ2(s0) = C(s0, s0) + τ2 − C(s0, N0)Σ−1
N0,N0

C(N0, s0)

̂m m



NN-GLS as a graph neural network (GNN)
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Prediction (kriging):

MLP

Xnew

O0

̂Y0Y4

Y5

=
̂Y*0

O*0

O4

O5

s0

N0

Y*0 = v0(θ)TYN*(0)

Y*0 = v00Y0 + ∑
j∈N0

v0jYj

Convolution



NN-GLS as a graph neural network (GNN)
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Prediction (kriging):

MLP

Xnew

O0

Deconvolution

̂Y0Y4

Y5

=
̂Y*0

O*0

O4

O5

s0

N0

Y*0 = v0(θ)TYN*(0)

Y*0 = v00Y0 + ∑
j∈N0

v0jYj

Y0 =
1

v00
(Y*0 − ∑

j∈N0

v0jYj)



NN-GLS as a graph neural network (GNN)
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Prediction (kriging):

MLP

Xnew

O0

Deconvolution

̂Y0Y4

Y5

=
̂Y*0

O*0

O4

O5

Prediction via the GNN is exactly equivalent  
to nearest-neighbor kriging mean  
for the model Y ∼ NNGP(m(X), Σ̃)

s0

N0

Y*0 = v0(θ)TYN*(0)

Y*0 = v00Y0 + ∑
j∈N0

v0jYj

Y0 =
1

v00
(Y*0 − ∑

j∈N0

v0jYj)



Variable importance
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When the covariate  is multivariate, importance of individual covariates in a non-
linear regression can be obtained using partial dependence functions (PDF)

PDF shows the marginal effect one covariate has on the predicted response as 
estimated by any machine learning model (Friedman, 2001)

PDF is obtained by integrating the remaining variables

E.g., If  is two-dimensional, i.e., , the PDF is

Partial dependence plots (PDP) are plots of PDF for each variable

X

X Xi = (Xi1, Xi2)′ 

PDF(X⋅1) = ̂m1 (X⋅1) =
1
n

n

∑
i=1

̂m1 (X⋅1, Xi2)



geospaNN package
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Python package for NN-GLS in PyPI

Available at https://pypi.org/project/geospaNN/

With real and simulated data analysis examples


https://pypi.org/project/geospaNN/


Theory
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1-layer NN-GLS is consistent for estimating the non-linear mean  for irregularly 
observed spatially correlated data processes under increasing domain 
asymptotics


Finite sample error rates of NN-GLS scale by  where  and  are 

upper and lower the eigenvalues of the discrepancy matrix 


m

Λhigh

Λlow
Λhigh Λlow

E = ΣT/2Σ̃−1Σ1/2



Theory
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Error rates are better when  is close to , 

i.e., when 


Worst rate when using  nearest neighbors

In this case, , i.e., NN-GLS = NN 

Shows that ignoring spatial correlation 
severely impacts performance of NN


Near best rate when using  nearest 
neighbors in the NNGP covariance 

Λhigh Λlow
Σ̃ ≈ Σ

0
Σ̃ = I

≈ 15
Σ̃

 and  of Λhigh Λlow E



Summary
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NN-GLS: Neural networks within the spatial GP model 

 is the NNGP covariance matrix;  modeled as a multi-layer perceptron (MLP)


GLS loss: , O is the output layer from the MLP


Representation as graph neural network:

MLP with two graph-convolution layers — one each for response and output 

GLS loss = OLS loss between the two graph convolution layers

Novel minibatching, backpropagation, and kriging algorithms,  complexity


Implementation of NN-GLS in the Python package geospaNN


Theory of neural networks for spatial data showing need for modeling spatial covariance

Y ∼ N(m(X), Σ̃)
Σ̃ m

(Y − O)⊤Σ̃−1(Y − O)

O(n)
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Abhi Datta             Short course on geospatial machine learning             IBC 2024

NN-GLS paper: Zhan, W., & Datta, A. (2024). Neural networks for geospatial 
data. Journal of the American Statistical Association, (In press), 1-21.

geospaNN software for NN-GLS: https://pypi.org/project/geospaNN/

https://pypi.org/project/geospaNN/


Other references

Abhi Datta             Short course on geospatial machine learning             IBC 2024

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.

Shen, X., Jiang, C., Sakhanenko, L., & Lu, Q. (2023). Asymptotic properties of neural network sieve estimators. Journal of nonparametric statistics, 35(4), 839-868.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with ReLU activation function, Annals of Statistics 1875-1897.

Farrell, M. H., Liang, T., & Misra, S. (2021). Deep neural networks for estimation and inference. Econometrica, 89(1), 181-213.

Fan, J., & Gu, Y. (2023). Factor augmented sparse throughput deep relu neural networks for high dimensional regression. Journal of the American Statistical 
Association, 1-15.

Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., & Timonin, V. (1998). Neural network residual kriging application for climatic data. Journal of Geographic 
Information and Decision Analysis, 2(2), 215-232.

Seo, Y., Kim, S., & Singh, V. P. (2015). Estimating spatial precipitation using regression kriging and artificial neural network residual kriging (RKNNRK) hybrid 
approach. Water Resources Management, 29, 2189-2204.

Tarasov, D. A., Buevich, A. G., Sergeev, A. P., & Shichkin, A. V. (2018). High variation topsoil pollution forecasting in the Russian Subarctic: Using artificial neural 
networks combined with residual kriging. Applied Geochemistry, 88, 188-197.

Chen, W., Li, Y., Reich, B. J. and Sun, Y. (2024), Deepkriging: Spatially dependent deep neural networks for spatial prediction, Statistica Sinica 34, 291–311.

Gray, S. D., Heaton, M. J., Bolintineanu, D. S. and Olson, A. (2022), On the use of deep neural networks for large-scale spatial prediction, Journal of Data Science 
20(4), 493–511.

Wang, H., Guan, Y. and Reich, B. (2019), Nearest-neighbor neural networks for geostatistics, in ‘2019 international conference on data mining workshops (ICDMW)’, 
IEEE, pp. 196–205.


