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Course outline
Part I: Introduction to geostatistics and spatial linear models


Part II: Random forests for geospatial data

Part IV a: Software demonstration of random forests for spatial analysis in R


Part III: Neural networks for geospatial data

Part IV b: Software demonstration of neural nets for spatial analysis in Python


Course materials available at https://abhirupdatta.github.io/
geospatial_stats_ML_short_course_2024/
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https://abhirupdatta.github.io/geospatial_stats_ML_short_course_2024/
https://abhirupdatta.github.io/geospatial_stats_ML_short_course_2024/


Overview of Part I
Introduction to geostatistics 

Exploratory data analysis

Maps and variograms


Gaussian Processes (GP) and spatial linear regression

Estimation and prediction (kriging)

Spatial linear mixed effect models


Big spatial data

Computing challenges

Fast alternatives (Nearest Neighbor Gaussian Process)
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What is spatial data
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Any data with some geographical information


Common sources of spatial data: 

climatology, forestry, ecology, environmental health, disease epidemiology, 
real estate marketing


Other examples where spatial need not refer to space on earth:

Neuroimaging (data for each voxel in the brain)

Genetics (position along a chromosome) 
Spatial transcriptomics (gene expression on slides)




Geostatistics
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Each observation (data unit) is associated with a 
geographical location (latitude-longitude)


Data represents a sample from a continuous 
spatial domain


Often displayed on a map


Referred to as geocoded/ geostatistical/ point 
referenced data

PM  ( ) in Colorado  
on Nov 12, 2024 from PurpleAir.com

2.5 μg/m3



Geostatistics
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Point referenced data:

Data collected at locations 


 : scalar response at location 

s1, …, sn

Yi = Y(si) si

PM  ( ) in Colorado  
on Nov 12, 2024 from PurpleAir.com

2.5 μg/m3



Geostatistics
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Point referenced data:

Data collected at locations 


 : scalar response at location 

s1, …, sn

Yi = Y(si) si

PM  ( ) in Colorado  
on Nov 12, 2024 from PurpleAir.com

2.5 μg/m3

:  vector of  
covariates (explanatory variables)
Xi = X(si) d × 1



Geostatistics
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Point referenced data:

Data collected at locations 


 : scalar response at location 

s1, …, sn

Yi = Y(si) si

PM  ( ) in Colorado  
on Nov 12, 2024 from PurpleAir.com

2.5 μg/m3

:  vector of  
covariates (explanatory variables)
Xi = X(si) d × 1

Objectives:

Predict  at any location without data


Understand spatial patterns in 

Understand relationship between  and 

 

Y
Y
X Y



Exploratory data analysis (EDA): Plotting the data
Point plots help to visualize the exact data where they are observed 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Surface plots (interpolated data) are often better help understand spatial patterns

Exploratory data analysis (EDA): Plotting the data
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Y(s) X(s)



What’s so special about spatial?
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Linear regression model: 


 are iid  errors 


; 


Inference: 


Prediction at new location : 

Although the data is spatial, this is an ordinary linear regression model


Y(si) = X(si)′ β + ϵ(si)

ϵ(si) N(0,τ2)

Y = (Y(s1), Y(s2), …, Y(sn))′ X = (X(s1)′ , X(s2)′ , …, X(sn)′ )′ 

̂β = (X′ X)−1X′ Y ∼ N(β, τ2(X′ X)−1)

s0
̂Y(s0) = X(s0)′ 

̂β



Surface plots of residuals  help identify residual spatial patterns not 
explained by the covariates

y(s) − ̂y(s)

Residual plots
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Surface plot of residuals

Surface plot of residuals not showing  
 any large scale spatial patterns

The covariate  seems to explain all 
spatial variation in the response 

When does such a non-spatial analysis 
suffice? 

X(s)
Y(s)



Another dataset
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Dataset 2: Y(s) Same X(s)



Linear regression: y(si) = β0 + x(si)β1 + ϵ(si)

Another dataset
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Dataset 2: Residual plot Dataset 1: Residual plot



Linear regression: y(si) = β0 + x(si)β1 + ϵ(si)

Another dataset
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Dataset 2: Residual plot

Strong residual spatial pattern


The covariate  does not explain all 
spatial variation in the response 


Besides eyeballing residual surfaces,  
how to do more formal EDA to identify 
spatial pattern ?

X(s)
Y(s)



Semi-Variogram
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First Law of Geography: “Everything is related to everything else, but near things 
are more related than distant things.” – Waldo Tobler


 and  should be more similar if  is near  
 

 should be small when  is small and increase as 
 increases 


Can this be formalized to identify spatial pattern in data?

Y(s1) Y(s2) s1 s2

(Y(s1) − Y(s2))2 ∥s1 − s2∥
∥s1 − s2∥



Semi-Variogram
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Empirical semi-variogram: 


Average of  for all pairs  such that 


For spatial data, the  is expected to roughly increase with the distance h

A flat semivariogram would suggest little spatial variation


variog command in the geoR R-package calculates empirical semivariograms

γ(h) = (Y(s1) − Y(s2))2 s1, s2 s1 − s2 ≈ h

γ(h)



Dataset 1
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Y(s) X(s) Residuals Y(s) − ̂Y(s)



Dataset 1
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Variogram of Y(s) Variogram of residuals 
Y(s) − ̂Y(s)

Variogram of residuals suggests very little spatial variation



Dataset 2

Abhi Datta             Short course on geospatial machine learning             IBC 2024

Y(s) X(s) Residuals Y(s) − ̂Y(s)



Dataset 2
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Variogram of Y(s) Variogram of residuals 
Y(s) − ̂Y(s)

Variogram of residuals suggests residual spatial variation



Spatial linear mixed effect models (SLMM)
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When purely covariate based models does not suffice, one needs to leverage 
the information from locations


SLMM: Y(si) = X(si)′ β + w(si) + ϵ(si)

Linear 
fixed effect

Spatial 
random effect

iid random 
errors

 is introduced to model spatial patterns in  that are not explained by w(si) Y(si) X(si)



Process-level model
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Usually goal is predicting  at any location  in the domain 

E.g., Conceptually pollutant level exists at all possible sites


SLMM:  for any location 

Y(s) s D

Y(s) = X(s)′ β + w(s) + ϵ(s) s ∈ D

Need to model  as a smooth function or stochastic process over D 

Many approaches to model and estimate : basis function expansions, 
penalized regression splines, Gaussian Processes

w(s)

w(s)



Gaussian processes
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 is often modeled as a Gaussian Process (GP)

 

 

 




w(s)

w( ⋅ ) ∼ GP(0,C( ⋅ , ⋅ ))

w = w(S) = (w(s1), …, w(sn))′ ∼ N(0,C)

Cij = Cov(w(si), w(sj)) = C(si, sj)



Gaussian processes
,





The covariance function models the spatial dependence


Stationarity and Isotropy:  where 


w( ⋅ ) ∼ GP(0,C( ⋅ , ⋅ ))
w = w(S) = (w(s1), …, w(sn))′ ∼ N(0,C)

C(si, sj) = C(∥h∥) h = si − sj
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Gaussian processes
,





Matérn covariance function: A common, flexible family of covariances  
specified using a spatial variance , spatial decay , and smoothness 


 (Exponential covariance): 


: 


 (Gaussian covariance): 


w( ⋅ ) ∼ GP(0,C( ⋅ , ⋅ ))
w = w(S) = (w(s1), …, w(sn))′ ∼ N(0,C)

C
σ2 ϕ ν

ν = 1/2 C(∥h∥) = σ2 exp(−ϕ∥h∥)

ν = 3/2 C(∥h∥) = σ2(1 + ϕ∥h∥)exp(−ϕ∥h∥)

ν = ∞ C(∥h∥) = σ2 exp(−ϕ∥h∥2)
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Gaussian processes
Matérn covariance function:

Tobler’s law
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Gaussian processes

Estimation of covariance parameters using Gaussian likelihood maximization

Process-level modeling:  is defined for any  in a region 


Allow predictions at any location  via kriging

w(s) s R
s0

w(s0) | w ∼ N(μ(s0), v(s0))

w(s0)
w

∼ N 0,
C(s0, s0) C(s0, S)
C(S, s0) C

,
w( ⋅ ) ∼ GP(0,C( ⋅ , ⋅ ))
w = w(S) = (w(s1), …, w(sn))′ ∼ N(0,C)
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Gaussian processes

Flexibility and robustness:  for suitable covariance functions  can non-

parametrically model any smooth fixed function  (van der Vaart 2008, 
2011)

w(s) C
f(s)

,
w( ⋅ ) ∼ GP(0,C( ⋅ , ⋅ ))
w = w(S) = (w(s1), …, w(sn))′ ∼ N(0,C)
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Spatial linear mixed effect models (SLMM)
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SLMM: , 


        ,  is Matérn covariance with parameters 

 

        


,  is often called the nugget

Y(si) = X(si)′ β + w(si) + ϵ(si) i = 1,…, n

w( ⋅ ) ∼ GP(0,C( ⋅ , ⋅ )) C σ2, ϕ, ν

w = w(S) = (w(s1), …, w(sn))′ ∼ N(0,C)

ϵ(si) ∼iid N(0,τ2) τ2



Spatial linear mixed effect models (SLMM)
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Marginal model: 


Parameters: Regression coefficient  and covariance parameters 

Estimates using maximum likelihood estimation (MLE)


Predictions at a new location using kriging

Based on the conditional normal distribution of 


Y ∼ N(Xβ, C + τ2I)

β θ = (τ2, σ2, ϕ, ν)

Y(s0) | Y



Dataset 2
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Y(s) X(s) Residuals Y(s) − ̂Y(s)



Model: , , 


Parameters estimated using likfit function of geoR package


Y ∼ N(X*β*, C + τ2I) X * = [1 : X] β* = (β′ 0, β′ 1)′ 

Dataset 2
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 Fixed at 0.5, i.e., using the exponential covariance[2] In geoR,  is the inverse of our definition of [1] ϕ ϕ



Model comparison metrics: Akaike Information Criterion (AIC) and Bayes 
Information Criterion (BIC)


Lower values better

AIC and BIC values are available from the output of likfit


Spatial model is clearly favored

Dataset 2
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Prediction: Available from krige.conv function of geoR


Data split: 

80% for estimation of parameters (train), 

20% for validation of predictions (test)


Dataset 2
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Prediction metrics:


Root mean square prediction error (RMSPE) 


Compares the point predictions 

Lower values is better


=
1

ntest

ntest

∑
i=1

(yi − ̂yi)2

̂yi

Dataset 2
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Prediction metrics:

Mean coverage probability (CP) of 95% prediction intervals


                                    


Evaluates the coverage of the interval predictions 

Ideally should be close to 95%

Otherwise we will have under or over coverage


Mean prediction interval width (PIW) 


If CP , then smaller PIW is better

=
1

ntest

ntest

∑
i=1

I(yi ∈ ( ̂yi,0.025, ̂yi,0.975))

( ̂yi,0.025, ̂yi,0.975)

=
1

ntest

ntest

∑
i=1

( ̂yi,0.975 − ̂yi,0.025)

≈ 0.95

Dataset 2
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Prediction:

Dataset 2
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Non-spatial model fit  
on test data

Spatial model fit  
on test data



House prices in California
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Covariates:

Median income

Median house age

Total rooms

Total bedrooms

Population

Number of Households

Ocean proximity


Data available on Kaggle.com



House prices in California
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Linear model analysis

Map of residuals Variogram of residuals



Western Experimental Forestry (WEF) data
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Data from spBayes package on census of all trees in a 10 ha. stand in Oregon

Response of interest: log(Diameter at breast height), i.e., log(DBH)

Covariate: Tree species (Categorical variable based on 4 species)

log(DBH) Species



Western Experimental Forestry (WEF) data
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Linear model analysis:

Map of residuals Variogram of residualsVariogram of log(DBH)



Western Experimental Forestry (WEF) data
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Model comparisons:

Map of residuals  
from the spatial model

Variogram of residuals  
from the spatial model



Western Experimental Forestry (WEF) data
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Predictions:

Map of predicted DBH Map of standard deviation  
of predicted DBH



Western Experimental Forestry (WEF) data
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Predictions:

Map of predicted DBH Map of standard deviation  
of predicted DBH  

with data locations



Western Experimental Forestry (WEF) data
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Predictions:

Map of predicted DBH Map of standard deviation  
of predicted DBH  

with data locations

Map of species type  
for training data



Western Experimental Forestry (WEF) data
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Predictions:

Map of predicted DBH Map of standard deviation  
of predicted DBH 

(highlighting locations 
 of Species GF)

Map of species type  
for training data



Big spatial data
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Data at  locations: 


Marginal model:  where 


Parameter estimation using MLE


Log-likelihood: 


Needs evaluation of  and quadratic forms of 


n S = {s1, …, sn}

Y ∼ N(Xβ, Σ(θ)) Σ(θ) = C + τ2I

l(β, θ | Y) = −
1
2

log det(Σ(θ)) −
1
2

(Y − Xβ)⊤Σ(θ)−1(Y − Xβ)

det(Σ(θ)) Σ(θ)−1



Big spatial data

Abhi Datta             Short course on geospatial machine learning             IBC 2024

Prediction at a new location :  


Conditional mean: 


Conditional variance: 


Again needs evaluation of quadratic forms of 

s0 Y(s0) | Y, θ, β = N (μ(s0), σ2(s0))
μ(s0) = X′ (s0)β + C(s0, S)Σ−1(Y − Xβ)

σ2(s0) = C(s0, s0) + τ2 − C(s0, S)Σ−1C(S, s0)

Σ−1



Computational details
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 is a dense  matrix


Both  and  are best computed via the Cholesky decomposition 


Cholesky decomposition: Any symmetric matrix  can be factorized as  
where  is lower triangular and  is diagonal


Cholesky decomposition requires  storage and ) time


Not feasible for large 

Σ := Σ(θ) n × n

det(Σ) Σ−1

A A = LDL′ 

L D

O(n2) O(n3

n



Methods for spatial big data
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Low-rank models


Spectral approximations


Lattice-based methods


Multi-resolution approaches


Covariance tapering


Stochastic Partial Differential Equations


Nearest-neighbor models


See Heaton et al. (2019) for a review



Methods for spatial big data
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Low-rank models


Spectral approximations


Lattice-based methods


Multi-resolution approaches


Covariance tapering


Stochastic Partial Differential Equations


Nearest-neighbor models


See Heaton et al. (2019) for a review



Nearest Neighbor Gaussian Processes

Likelihood factorization: p(Y) = p(Y1) ×
n

∏
i=2

p(Yi |Y1, …, Yi−1)

Vecchia’s GP likelihood approximation (Vecchia, 1988, JRSSB):

set of  nearest neighbors of location  among 
N(i) = m si s1, …, si−1

p(Y) ≈ p(Y1) ×
n

∏
i=2

p(Yi |YN(i))

Reduces computation time from  to O(n3) O(nm3)

Y ∼ N(Xβ, Σ(θ))GP regression model: 
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NNGP (Datta et al, 2016, JASA): Vecchia’s approximation corresponds to a 
distribution  and can be extended to a valid Gaussian process (NNGP)
N(0,Σ̃)

Nearest Neighbor Gaussian Processes
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NNGP (Datta et al, 2016, JASA): Vecchia’s approximation is the likelihood of a 
distribution  and can be extended to a valid Gaussian process (NNGP)


NNGP likelihood factorizes on a sparse directed acyclic graph (DAG)


N(0,Σ̃)

Nearest Neighbor Gaussian Processes

Full dependency graph

1

2

3

4

5

67

× p(y6 | y1, y2, y3, y4, y5)p(y7 | y1, y2, y3, y4, y5, y6)

p(y) = p(y1)p(y2 | y1)

× p(y3 | y1, y2)p(y4 | y1, y2, y3)p(y5 | y1, y2, y3, y4)

Full GP likelihood

Complete DAG
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NNGP (Datta et al, 2016, JASA): Vecchia’s approximation is the likelihood of a 
distribution  and can be extended to a valid Gaussian process (NNGP)


NNGP likelihood factorizes on a sparse directed acyclic graph (DAG)


N(0,Σ̃)

Nearest Neighbor Gaussian Processes

× p(y6 | y1, y2, y3, y4, y5)p(y7 | y1, y2, y3, y4, y5, y6)

p(y) = p(y1)p(y2 | y1)

× p(y3 | y1, y2)p(y4 | y1, y2, y3)p(y5 | y1, y2, y3, y4)

NNGP likelihood

3−Nearest neighbor dependency graph

1

2

3

4

5

67

3-NN DAG
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DL Σ̃−1

The NNGP precision matrix admits the factorization 

 is diagonal with entries 

 is lower triangular and row sparse


Sparsity determined by the nearest-neighbor DAG

 is also sparse


Σ̃−1 = L′ DL
D di
L

Σ̃−1

Nearest Neighbor Gaussian Processes
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Estimation: 


The NNGP precision matrix 

 is diagonal with entries 

 is lower triangular and row sparse

 and  can be computed in  time





 where 


Total time to evaluate NNGP likelihood is 

Σ̃−1 = L′ DL
D di
L
L D O(nm3)

det(Σ̃) =
1

∏i di

x′ Σ̃−1x = (Lx)′ D(Lx) = ∑
i

v2
i di v = Lx

O(nm3)

Nearest Neighbor Gaussian Processes
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Predictions: 


NNGP prediction at a new location :


  


 nearest neighbors of  among 


Conditional mean: 


Conditional variance: 

s0

Y(s0) | Y, θ, β = Y(s0) | YN0
, θ, β = N (μ̃(s0), σ̃2(s0))

N0 = m s0 s1, …, sn

μ̃(s0) = X′ (s0)β + C(s0, N0)Σ−1
N0,N0

(YN0
− XN0

β)

σ̃2(s0) = C(s0, s0) + τ2 − C(s0, N0)Σ−1
N0,N0

C(N0, s0)

Nearest Neighbor Gaussian Processes
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Software (R package): 


BRISC (Saha and Datta)

Frequentist implementation

Estimation with bootstrapped uncertainty

Prediction with uncertainty

Simulation of large spatial data


spNNGP (Finley, Datta, and Banerjee)

Bayesian implementation

Full posterior distributions using MCMC

Nearest Neighbor Gaussian Processes
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Forest canopy height (FCH) estimates at 180,000 locations NASA Goddard’s 
LiDAR in Bonanza Creek Experimental Forest, Alaska

Bonanza Creek Experimental Forest Data

Forest canopy height (FCH) Covariate — Percent tree cover (PTC)
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Linear model:

Bonanza Creek Experimental Forest Data

Residuals Variogram of a subset of residuals
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Spatial model: Fitted using BRISC_estimation, predictions using BRISC_prediction

Bonanza Creek Experimental Forest Data

Non-spatial model Spatial model
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Spatial model: Fitted using BRISC_estimation, predictions using BRISC_prediction

Bonanza Creek Experimental Forest Data

Spatial  
model residuals

Non-spatial  
model residuals

Abhi Datta             Short course on geospatial machine learning             IBC 2024



Summary
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Introduction to geostatistics

Data setup and analysis objectives 

Exploratory data analysis to understand need for spatial modeling

Maps and variograms of data and linear model residuals


Spatial linear mixed effect models

Process level modeling and Gaussian processes

Parameter estimation 

Prediction (kriging) with uncertainty quantification




Summary
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Model comparison

Estimation: AIC, BIC

Prediction: RMSPE, coverage probability and width of prediction intervals, 


Big spatial data

Computing challenges

Fast alternatives (Nearest Neighbor Gaussian Process)


Spatial analysis using geoR and BRISC R-packages
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