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Overview of Part II
Spatial Linear Models

Limitations of linearity

Non-linear regression methods for spatial data
Basis functions and GAMs
Machine learning methods like Random forests (RF) and Neural Networks (NN)

Issues of standard random forests for spatial or time-series data

RF-GLS: Random forests for spatial data with explicit modeling of spatial correlation
Spatial and time-series examples

Demonstration of RandomForestsGLS R-package implementing RFGLS
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Spatial linear mixed effects model

Abhi Datta             Short course on geospatial machine learning             IBC 2024

 Yi = X′￼i β + wi + ϵ*i , w ∼ GP(0,C), ϵ* ∼iid N(0,τ2)SLMM:

Marginal model:  where  Y ∼ N(Xβ, Σ) Σ = Cov(ϵ) = C(θ) + τ2I

 Yi = X′￼i β + ϵi, ϵi = wi + ϵ*iDependent errors:

The errors  are now a dependent process, ϵi Cov(ϵi, ϵj) = Cij + τ2I(i = j)



Spatial linear mixed effects model
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Linearity is a strong assumption on the relationship between the response 
and covariates

 Yi = X′￼i β + wi + ϵ*i , w ∼ GP(0,C), ϵ* ∼iid N(0,τ2)SLMM:

Marginal model:  where  Y ∼ N(Xβ, Σ) Σ = Cov(ϵ) = C(θ) + τ2I

 Yi = X′￼i β + ϵi, ϵi = wi + ϵ*iDependent errors:

The errors  are now a dependent process, ϵi Cov(ϵi, ϵj) = Cij + τ2I(i = j)



Non-linear models for dependent data
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Yi = X′￼i β + ϵiDependent errors:

The errors  are a dependent process, ϵi Cov(ϵi, ϵj) = Cij + τ2I(i = j)



Non-linear models for dependent data
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Yi = X′￼i β m(Xi) + ϵiDependent errors:

The errors  are a dependent process, 


Non-linear mean function 


Reduces to the linear model when 

 

ϵi Cov(ϵi, ϵj) = Cij + τ2I(i = j)

E(Yi) = m(Xi)
m(Xi) = X′￼i β



Classic non-linear models for dependent data
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Basis functions (Diggle and Hutchinson, 1989)

,  are basis functions in 


Marginal model: 


Still a linear model in the regression coefficients 

Can be implemented in the same way as the spatial linear model


E(Yi) = m(Xi) = B(Xi)γ B(Xi) Xi

Y ∼ N(B(X)γ, Σ)
γ



Classic non-linear models for dependent data
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Basis functions (Diggle and Hutchinson, 1989)

,  are basis functions in 


Marginal model: 


Still a linear model in the regression coefficients 

Can be implemented in the same way as the spatial linear model


E(Yi) = m(Xi) = B(Xi)γ B(Xi) Xi

Y ∼ N(B(X)γ, Σ)
γ

Basis functions directly on the multivariate 


Suffers from curse of dimensionality when  is more than 2- or 3-dimensional 
(Taylor and Einbeck, 2013)

Xi

Xi



Classic non-linear models for dependent data
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GAMs (generalized additive models) for spatial data (Nandy et al., 2017, JRSSB)





Each  represented as basis functions


Reduces to special case of basis function models 


E(Yi) = m(Xi) =
d

∑
j=1

mj(Xij)

mj



Classic non-linear models for dependent data
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GAMs (generalized additive models) for spatial data (Nandy et al., 2017, JRSSB)





Each  represented as basis functions


Reduces to special case of basis function models 


E(Yi) = m(Xi) =
d

∑
j=1

mj(Xij)

mj

GAMs do not model interactions



Machine learning for dependent data
ML algorithms like random forests (RF, Breiman) and neural nets (NN) can model 
higher order interactions


RF and NN can approximate any smooth function (Universal approximation result 
for NN, Hornik, Stinchcombe, White, 1989)


Asymptotic theory supporting Breiman’s random forests (Scornet et al. 2015)


Asymptotic theory on neural nets working better than basis functions (Schmidt-
Hieber, 2020)

Abhi Datta             Short course on geospatial machine learning             IBC 2024



Machine learning for dependent data
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Rapid rise in use of machine learning algorithms for geospatial analysis




Machine learning for dependent data

Abhi Datta             Short course on geospatial machine learning             IBC 2024

Rapid rise in use of machine learning algorithms for geospatial analysis




Impact of ignoring data correlation in random forests
ML function classes are non-linear in the parameters


Until recently, most ML algorithms could not directly account for correlation for 
dependent (spatial/time series) data


What is the impact of ignoring data correlation?


How to use RF or NN while explicitly modeling data correlation?
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Review of Regression Tress and Random Forests
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Regression trees
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CART (Classification and regression tree) Split criterion: Maximize
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x1 < 0.2 x1 > 0.2
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CART (Classification and regression tree) Split criterion: Maximize

Review of Regression Tress and Random Forests
Regression trees
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x1 < 0.2 x1 > 0.2
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CART (Classification and regression tree) Split criterion: Maximize

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

-10

-5

0

5

10

y

Review of Regression Tress and Random Forests
Regression trees

Abhi Datta             Short course on geospatial machine learning             IBC 2024



x1 < 0.2 x1 > 0.2
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CART (Classification and regression tree) Split criterion: Maximize
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Review of Regression Tress and Random Forests
Regression trees
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Review of Regression Tress and Random Forests
Data: 


Node creation: Sequentially maximizing the CART-split criterion within each node


Representative assignment: The value of the tree estimator at each leaf node is the 
mean of the responses of the node members


Random feature selection: For each split, only consider a randomly chosen (mtry 
<< D) subset of the features as candidate split direction


Bagging / subsampling: RF estimate = average of a large number of regression 
trees, each tree grown with a resample/subsample of the data

(Yi, Xi) ∈ ℝ × ℝd, i = 1,…, n
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Issues of RF for dependent data
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Issues of RF for dependent data
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Issues of RF for dependent data
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Issues of RF for dependent data
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Issues of RF for dependent data
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Local decision making in the regression trees ignores serial/spatial correlation 
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Close in space/time domain and likely to be correlated
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Issues of RF for dependent data

Local decision making in the regression trees ignores correlation with data in other 
nodes


Use of variances (least squares loss) and node mean as the representative in the 
CART-split criterion ignores correlation among data within a node


Resampling of data to create a forest of trees is not ideal for correlated data. 
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Issues of RF for dependent data
m(x) = 10sin(πx)

 from RF̂m (x)iid errors
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Issues of RF for dependent data
m(x) = 10sin(πx)

 from RF̂m (x)spatially correlated errors
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Random forest methods for geospatial data

1. Naïve approach — Residual/hybrid kriging:

Estimates a non-linear regression function  using Random Forests


Kriging on the residuals  for spatially-informed predictions  
Fayad et al. 2016; Fox et al. 2020


E(Y) = m(X)
Yi − ̂m (Xi)
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Random forest methods for geospatial data

1. Naïve approach — Residual/hybrid kriging:

Estimates a non-linear regression function  using Random Forests


Kriging on the residuals  for spatially-informed predictions  
Fayad et al. 2016; Fox et al. 2020


E(Y) = m(X)
Yi − ̂m (Xi)

Spatial dependence is completely ignored during estimation

Ignoring spatial correlation impacts estimation

Poor estimation in turn can affect prediction performance
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2. Brute-force approach — added spatial features

Creates a set of spatial features / covariates  
(spatial co-ordinates, pairwise distances, basis functions, etc.)

Estimates a non-linear regression function  using ML

Random forests: Hengl et al., 2018.

F(s)

E(Y) = g(X, F(s))

Random forest methods for geospatial data

Abhi Datta             Short course on geospatial machine learning             IBC 2024



2. Brute-force approach — added spatial features

Creates a set of spatial features / covariates  
(spatial co-ordinates, pairwise distances, basis functions, etc.)

Estimates a non-linear regression function  using ML

Random forests: Hengl et al., 2018.

F(s)

E(Y) = g(X, F(s))

Does not belong to the mixed effects model framework

Prediction only! Cannot estimate separate spatial and non-spatial effects

Curse of dimensionality: Often needs a large number of spatial features

Random forest methods for geospatial data
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1. Naïve approach — Residual/hybrid kriging

2. Brute-force approach — added spatial features


Neither approach actually models spatial correlation as is done 
traditionally in geospatial analysis


Random forest methods for geospatial data
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Random forest methods for geospatial data

3. Model-based approach — random forests within the spatial mixed model:


 Yi = XT
i β m(Xi) + wi + ϵ*i , w ∼ GP(0,C), ϵ*i ∼iid N(0,τ2)

Estimate a non-linear  using Random Forests 
Retains all advantages of the traditional spatial mixed models


Interpretability and parsimony of GP 
Estimation of mean and spatial prediction (kriging)

m

Challenge:

How to estimate  using random forests within this model-based framework?m
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Generalized least squares
 Yi = m(Xi) + wi + ϵ*i , w ∼ GP(0,C), ϵ*i ∼iid N(0,τ2)

Marginal model:  where  Y ∼ N(m(X), Σ) Σ = Cov(ϵ) = C(θ) + τ2I

When , for a given , the maximum likelihood 
estimator (MLE) of  is the generalized least squares (GLS) estimate





The estimate of the mean function is 

m(Xi) = X′￼i β Σ = Cov(ϵ)
β

̂βGLS = arg maxβ (Y − Xβ)′￼Σ−1(Y − Xβ) = (X′￼Σ−1X)−1X′￼Σ−1Y

̂m(x) = x′￼
̂βGLS
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Revisiting the CART-split criterion
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CART (Classification and regression tree) Split criterion: Maximize

Parent node
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Revisiting the CART-split criterion
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CART (Classification and regression tree) Split criterion: Maximize

Parent node

Parent node variance
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min
β(0)

∥Y − Z(0)β(0)∥2

Z(0)

β(0)

Revisiting the CART-split criterion
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CART (Classification and regression tree) Split criterion: Maximize

Parent node

Parent node variance
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Revisiting the CART-split criterion

CART (Classification and regression tree) Split criterion: Maximize

Left 
child node

Right 
child node

Left 
child node

Right 
child node
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Revisiting the CART-split criterion

CART (Classification and regression tree) Split criterion: Maximize

Left 
child node

Right 
child node

Left 
child node

Right 
child node

Total children node variance

Potential children nodes
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Revisiting the CART-split criterion

CART (Classification and regression tree) Split criterion: Maximize

Left 
node 

membership

Right 
node 

membership

min
β

∥Y − Zβ∥2

Left 
child node

Right 
child node

Left 
child node

Right 
child node

Total children node variance

Potential children nodes
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Revisiting the CART-split criterion

min
β

∥Y − Zβ∥2

Left 
child node

Right 
child node

Total children node variance

Potential children nodes

CART (Classification and regression tree) Split criterion: maxZ,β
1
n (∥y − Z(0) ̂β(0)∥2

2 − ∥y − Zβ∥2
2)
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Revisiting the CART-split criterion

CART (Classification and regression tree) Split criterion: maxZ,β
1
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Revisiting the CART-split criterion

CART (Classification and regression tree) Split criterion: maxZ,β
1
n (∥y − Z(0) ̂β(0)∥2

2 − ∥y − Zβ∥2
2)
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Revisiting the CART-split criterion

CART (Classification and regression tree) Split criterion: maxZ,β
1
n (∥y − Z(0) ̂β(0)∥2

2 − ∥y − Zβ∥2
2)
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x1 < 0.2 x1 > 0.2
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Review of Regression Tress and Random Forests
Regression trees

CART (Classification and regression tree) Split criterion: maxZ,β
1
n (∥y − Z(0) ̂β(0)∥2

2 − ∥y − Zβ∥2
2)
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x1 < 0.2 x1 > 0.2
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Review of Regression Tress and Random Forests
Regression trees

CART (Classification and regression tree) Split criterion: maxZ,β
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CART-split criterion as OLS optimization
Nodes  with membership matrix  and node representatives (node 
means)    


To split the parent node  next, the CART-split criterion is equivalent to  
maximizing the following over  and 

C1, …, CK Z(0)

̂β(0) = (β(0)
1 , …, β(0)

K )′￼

Ck

c, j, β

1
n (∥Y − Z(0) ̂β(0)∥2

2 − ∥Y − Z(c, j)β∥2
2)

 is the membership matrix for potential children nodes created by  
splitting  at variable  at cutoff 
Z(c, j)

Ck j c
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CART-split criterion as OLS optimization

( ̂c, ̂j, ̂β) = arg maxc,j,β
1
n (∥Y − Z(0) ̂β(0)∥2

2 − ∥Y − Z(c, j)β∥2
2)

New membership matrix: Z = Z( ̂c, ̂j)

New node representatives: ̂β = (Z′￼Z)−1Z′￼Y
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DART-split criterion using GLS loss

Replace CART split criterion, a global OLSReplace CART split criterion, a global OLS loss

( ̂c, ̂j, ̂β) = arg minc,j,β
1
n

(y − Z(c, j)β)′￼Σ−1(y − Z(c, j)β)

( ̂c, ̂j, ̂β) = arg maxc,j,β
1
n (∥Y − Z(0) ̂β(0)∥2

2 − ∥Y − Z(c, j)β∥2
2)

= arg minc,j,β
1
n

∥Y − Z(c, j)β∥2
2

with Dependency-adjusted Regression Tree (DART)-split criterion a global GLS loss
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DART-split criterion using GLS loss

In practice,  is replaced by an estimate , the working covariance matrixΣ ̂Σ

Dependency-adjusted Regression Tree (DART)-split criterion, a global GLS loss

( ̂c, ̂j, ̂β) = arg minc,j,β
1
n

(y − Z(c, j)β)′￼Σ−1(y − Z(c, j)β)
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GLS vs OLS tree for dependent data

True : Discontinuity at 0.5m(x) CART and DART loss as function 
 of cutoff for 100 datasets
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GLS vs OLS tree for dependent data

True : Discontinuity at 0.5m(x) Density of selected cutoffs minimizing 
 CART and DART loss over 100 datasets
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GLS-style regression tree
Build the tree by sequentially splitting nodes


Maximize the DART split criterion for splitting a node

Update the membership matrix to reflect the current set of nodes

Repeat till a stopping criterion is met (e.g., minimum nodesize)

Membership matrix  corresponding to final set of nodes        ̂Z

Final set of node representatives ̂βGLS = ( ̂Z′￼Q ̂Z)−1 ̂Z′￼QY

 is the working precision matrixQ = ̂Σ −1

Both splitting of nodes and representative assignment uses correlation among all 
data points
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Trees to forest
RF estimate is an average over several tree estimates


Each tree in RF uses a resample of the data  where  is the resampling matrix

Under dependence, this will end up resampling correlated data 

Leads to singularity of the GP covariance matrix

PtY Pt
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Correlation adjusted resampling
Regression tree with a resample  uses the OLS loss function  


GLS loss with  and  using a working precision matrix  is equivalent to OLS 
loss with  and . 


Immediate extension for resampling: Use the tree-specific DART split-criterion


                        


Only needs the Cholesky factor 


We essentially resample the contrasts (prewhitened data) 

PtY ∥PtY − PtZβ∥2

Y Z Q
Ỹ = Q1/2Y Z̃ = Q1/2Z

∥PtỸ − PtZ̃β∥2

Q1/2 = ̂Σ −1/2

Ỹ = Q1/2Y
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RF-GLS estimation summary
Create  many resampling matrices 


For the  resampling matrix , build GLS-style tree using DART split criterion


Final set of nodes and node representatives 


Tree-estimate of  is the  component of  if  node of the  tree


RF-GLS estimate of  is the average of all tree-specific estimates

ntree P1, …, Pntree

tth Pt

̂β(t)
GLS

m(x) kth ̂β(t)
GLS x ∈ kth tth

m(x)
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Recall: When , predictive distribution at a new location  is given by 

 

Conditional (kriging) mean: 

Conditional (kriging) variance: 

m(x) = x′￼β s0

Y(s0) | Y, θ, β = N (μ(s0), σ2(s0))
μ(s0) = X′￼(s0) ̂β + C(s0, S)Σ−1(Y − X ̂β)

σ2(s0) = C(s0, s0) + τ2 − C(s0, S)Σ−1C(S, s0)

Predictions with RF-GLS
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Predictions with RF-GLS
For RF-GLS, predictive distribution at a new location  is given by 

 

Conditional (kriging) mean: 

Conditional (kriging) variance: 

Immediate extension for RF-GLS
Advantage of RF-GLS being embedded in the spatial mixed model based framework

s0

Y(s0) | Y, θ, β = N (μ(s0), σ2(s0))
μ(s0) = ̂m (X(s0)) + C(s0, S)Σ−1(Y − ̂m (X))

σ2(s0) = C(s0, s0) + τ2 − C(s0, S)Σ−1C(S, s0)

̂m (X(s0)) ̂m (X)
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Practical implementation

Estimate the spatial parameters in  using the residuals   
using RF to get initial estimate of 

Σ yi − ̂minit (Xi)
m

Spatial parameter estimation:

Speedup using NNGP:
Only one time evaluation of the Cholesky factor 


Requires  computation

We use  where  is the Nearest Neighbor Gaussian Process  
(NNGP) covariance matrix

NNGP requires  time and directly gives 

Σ−1/2

O(n3)
Q = Σ̃−1 Σ̃

O(n) Q1/2 = Σ̃−1/2
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RandomForestsGLS R-package
Model estimation using the RFGLS_estimate_spatial function


Mean function prediction using the RFGLS_predict function


Spatial predictions of the response using the RFGLS_predict_spatial function


Available on CRAN: https://cran.r-project.org/web/packages/RandomForestsGLS/


Vignette: How to use RandomForestsGLS
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https://cran.r-project.org/web/packages/RandomForestsGLS/
https://cran.r-project.org/web/packages/RandomForestsGLS/vignettes/RandomForestsGLS_user_guide.pdf


RF vs RF-GLS for spatially dependent data
m(x) = 10sin(πx)

 from RF and RF-GLŜm (x)spatially correlated errors
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Computational strategies

True mean function

RFGLS_estimate_spatial can be slow for moderate-sized datasets


Example: n = 1000
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Computational strategies
RFGLS_estimate_spatial can be slow for moderate-sized datasets


Example: n = 1000

Fit (red) from RF-GLS, Running time: 35 mins
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Computational strategies: Rounding
Trees in random forests are built by searching through gaps in covariates

x1 < 0.2 x1 > 0.2

[0,1]2

x2 < 0.6 x2 > 0.6 x1 < 0.7 x1 > 0.7

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

-10

-5

0

5

10

y
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Computational strategies: Rounding
Trees in random forests are built by searching through gaps in covariates 
Rounding the covariates reduce the number of gaps and running time

Using original , 999 gaps, Running time: 35 minsx Rounded  to 2 decimal places,  
374 gaps, Running time: 8 mins

x
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Computational strategies: Rounding
Trees in random forests are built by searching through gaps in covariates 
Rounding the covariates reduce the number of gaps and running time
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Using original , 999 gaps, Running time: 35 minsx Rounded  to 1 decimal places,  
60 gaps, Running time: 2 mins

x



Computational strategies: Binning
Rounding to fixed number of decimal digits is binning at fixed width

Alternatively, one can bin to quantiles of  (e.g., bin to nearest even quantile)


Bins are of variable widths determined by the distribution of 
X

X

Using original , 999 gaps, Running time: 35 minsx Binned to nearest even quantile, 
50 gaps, Running time: 2 mins
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Computational strategies: Parallelization
RFGLS_estimate_spatial allows parallel computations


Number of cores can be set by the  argument (default is ) h h = 1

 (No parallelization), Running time: 35 minsh = 1 , Running time: 23 minsh = 10
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Computational strategies: Parallelization
RFGLS_estimate_spatial allows parallel computations


Number of cores can be set by the  argument (default is ) 

 needs to be strictly less than the total number of cores 


Only recommended for larger datasets


Prediction is very fast and do not require parallelization


h h = 1
h
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Mean shift
Mean function estimates can sometimes have a constant shift


Occurs when the locations are densely packed

Insight: Even in linear regression, GLS estimators may not identify the intercept 
under in-fill sampling

True function and estimates  
for data at 500 locations in [0,1] × [0,1]
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Mean shift
Mean function estimates can sometimes have a constant shift

One can thus look at centered estimates

True function and estimates  
for data at 500 locations in [0,1] × [0,1]

Centered true function and estimates  
for data at 500 locations in [0,1] × [0,1]

Abhi Datta             Short course on geospatial machine learning             IBC 2024



Mean shift
Mean function estimates can sometimes have a constant shift


Occurs when locations are densely packed (in-fill sampling)

Less severe when locations are spread out (increasing domain sampling)

500 locations in [0,1] × [0,1] 500 locations in [0,5] × [0,5]
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Spatial parameter estimation
RFGLS_estimate_spatial can estimate the spatial covariance parameters 

(set param_estimate=T)

It can also use fixed user-input values of these parameters
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Spatial parameter estimation

Setting param_estimate=T estimates the parameters based on training residuals 
from an RF fit


May estimate weaker spatial correlation (small , large ) if RF overfits


Alternatively, one can use test residuals from an RF-fit to pre-estimate the 
parameters


Another choice is to use parameter estimates from a spatial linear model (using 
BRISC)

σ2 ϕ
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Plant richness modeling
Dataset on plant richness from the spatialRF package 

log(rch)=log(richness) tmp=temperature
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Plant richness modeling

log(rch) vs tmp
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Plant richness modeling

Split of the data into test and train sets
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Plant richness modeling

(Non-spatial) linear model fit Semi-variogram of the residuals
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Plant richness modeling

RFGLS fit of the mean

RMSE for mean estimation 
ntest

∑
i=1

(yi − m̂(Xi))2

LM = linear model log(rch) ~ tmp + iid error 
spLM = linear model (log(rch) ~ tmp + GP error 

RF = random forest log(rch) ~ m(tmp) + iid error

RFGLS = random forest log(rch) ~ m(tmp) + GP error
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Plant richness modeling

RMSPE for spatial predictionsMethods


LM* = linear model log(rch) ~ tmp + iid error 
spLM = linear model log(rch) ~ tmp + GP error 

spLM2 = linear model log(rch) ~ tmp + lat + GP error

RF* = random forest log(rch) ~ m(tmp) + iid error

RFGLS = random forest log(rch) ~ m(tmp) + GP error

RFGLS2 = random forest log(rch) ~ m(tmp,lat) + GP error

RF-loc = random forest log(rch) ~ m(tmp,lat,lon) + iid error

spRF = random forest log(rch) ~ m(tmp,pairwise distances) + iid error


* Does not offer spatial predictions, so just the mean predictions are used
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RFGLS for time series data

RFGLS can be used to estimate non-linear mean functions in time series data with 
autoregressive errors


Non-linear AR( ) model: 
q Yt = m(Xt) + ϵt, ϵt =
q

∑
j=1

ρjϵt−j + ηt, ηt ∼iid N(0,σ2)
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RFGLS for time series data

RFGLS can be used to estimate non-linear mean functions in time series data with 
autoregressive errors


Non-linear AR( ) model: 
q Yt = m(Xt) + ϵt, ϵt =
q

∑
j=1

ρjϵt−j + ηt, ηt ∼iid N(0,σ2)

Estimation of  using RFGLS_estimate_timeseries 
Setting param_estimate=T estimates the auto-correlation parameters

Initial values of auto-correlation parameters can be set using lag_params 
If param_estimate=F, auto-correlation parameters are fixed at lag_params values 

Prediction of  using RFGLS_predict

m

m
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Low-cost sensor air-pollution time-series modeling

Goal: Estimate the mean of the low-cost sensor data (raw) in terms of the 
higher quality reference data (MDE)
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Low-cost sensor air-pollution time-series modeling

Goal: Estimate the mean of the low-cost sensor data (raw) in terms of the 
higher quality reference data (MDE)
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Low-cost sensor air-pollution time-series modeling
Linear model:

PM25_raw ~ PM25_MDE + iid error

Partial auto-correlation function (pacf) plot of the linear model residuals
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Low-cost sensor air-pollution time-series modeling
Methods

LM = linear model 


PM25_raw ~ PM25_MDE + iid error

RF = random forest 


PM25_raw ~ PM25_MDE + iid error

RFGLS = random forest for time series


PM25_raw ~ PM25_MDE + AR(1) error


Train:

Hourly data from days 1 to 12 

Test:

Hourly data from days 15 and 16

(n = 24 * 12 = 288)
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Low-cost sensor air-pollution time-series modeling
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Low-cost sensor air-pollution time-series modeling

Order of autoregression: RFGLS can 
use higher order AR models


To fit AR model of order , simply 
provide a -dimensional vector input 
value of lag_params 

q
q

Fits from RFGLS with AR(1) error vs

RFGLS with AR(2) error for the PM25 data
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Low-cost sensor air-pollution time-series modeling

RFGLS_estimate_timeseries only works 
for datasets with equi-spaced time-
points 

Unequally spaced time-series data can 
be analyzed by RFGLS_estimate_spatial 

Treats time as 1-dimensional space

Leverages equivalence of AR(1) and 
exponential GP covariance matrices

Fits from RFGLS with AR(1) error vs

RFGLS with exponential GP error for the PM25 data
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Asymptotic Theory for RFGLS
If the errors are sub-Gaussian stationary mixing (absolutely regular) process, 
then under regularity conditions on the working precision matrix, RF-GLS is 
consistent for . 


Examples where the consistency holds:

Spatial Matérn GP on 1-dimensional lattice 
Autoregressive time-series


To our knowledge, first theory of random forests for spatially dependent data

β−

m
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Summary
The linearity assumption of spatial mixed effect models can sometimes be 
inadequate

Non-linear machine learning methods like random forests and neural networks are 
being increasingly adopted for geospatial analysis

Cannot directly model spatial correlation as done in mixed models via 
Gaussian Process errors
Spatial correlation is often ignored for mean function estimation using random 
forests
Latitude-longitude or pairwise distances used as additional features in random 
forests can only offer prediction
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Summary
RF-GLS: A model based framework, embedding RF within the spatial mixed models

Spatial correlation directly modeled using Gaussian process errors
Non-linear mean function estimated using random forests by accounting for 
spatial correlation (DART loss and GLS style trees)
Spatially-informed predictions using GP via kriging

RFGLS can also be used non-linear trend (mean) estimation in time series data

Asymptotic theory of RFGLS for dependent data

RandomForestsGLS R-package 
Estimation and prediction using RFGLS in spatial and time-series data
Computational strategies using rounding, binning, parallelization
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